论文标题
加强学习投资组合经理框架与蒙特卡洛模拟
Reinforcement Learning Portfolio Manager Framework with Monte Carlo Simulation
论文作者
论文摘要
使用加强学习的资产分配具有优势,例如在目标设定和利用各种信息方面的灵活性。但是,现有的资产分配方法在解决资产分配问题时没有考虑以下观点。首先,不考虑投资组合管理和金融市场特征的州设计。其次,模型过拟合。第三,模型培训设计没有考虑财务时间序列数据的统计结构。为了使用强化学习解决现有资产分配方法的问题,我们提出了一种新的强化学习资产分配方法。首先,该模型管理的投资组合状态被视为强化学习者的状态。其次,蒙特卡洛模拟数据用于增加训练数据的复杂性,以防止模型过度拟合。这些数据可以具有不同的模式,从而增加数据的复杂性。第三,考虑金融市场的各种统计结构,创建了蒙特卡洛模拟数据。我们将金融市场的统计结构定义为构成金融市场资产的相关矩阵。我们通过实验表明,我们的方法以几个测试间隔优于基准。
Asset allocation using reinforcement learning has advantages such as flexibility in goal setting and utilization of various information. However, existing asset allocation methods do not consider the following viewpoints in solving the asset allocation problem. First, State design without considering portfolio management and financial market characteristics. Second, Model Overfitting. Third, Model training design without considering the statistical structure of financial time series data. To solve the problem of the existing asset allocation method using reinforcement learning, we propose a new reinforcement learning asset allocation method. First, the state of the portfolio managed by the model is considered as the state of the reinforcement learning agent. Second, Monte Carlo simulation data are used to increase training data complexity to prevent model overfitting. These data can have different patterns, which can increase the complexity of the data. Third, Monte Carlo simulation data are created considering various statistical structures of financial markets. We define the statistical structure of the financial market as the correlation matrix of the assets constituting the financial market. We show experimentally that our method outperforms the benchmark at several test intervals.