论文标题

简单各向同性3空间中零平均曲率表面的反射原理

Reflection principles for zero mean curvature surfaces in the simply isotropic 3-space

论文作者

Akamine, Shintaro, Fujino, Hiroki

论文摘要

零平均曲率表面在简单的各向同性3空间$ \ mathbb {i}^3 $自然出现在$ \ mathbb {e}^3 $中的最小表面的几何形状与$ \ mathbb {l} l}^3 $中的最大表面的几何形状。在本文中,我们研究了$ \ mathbb {i}^3 $中零平均曲率表面的反射原理,就像$ \ mathbb {e}^3 $和$ \ mathbb {l}^3 $中的上述表面一样。特别是,我们在$ \ mathbb {i}^3 $中显示了零平均曲率表面的各向同性线段的反思原理,诱导的度量标准变得单数。

Zero mean curvature surfaces in the simply isotropic 3-space $\mathbb{I}^3$ naturally appear as intermediate geometry between geometry of minimal surfaces in $\mathbb{E}^3$ and that of maximal surfaces in $\mathbb{L}^3$. In this paper, we investigate reflection principles for zero mean curvature surfaces in $\mathbb{I}^3$ as with the above surfaces in $\mathbb{E}^3$ and $\mathbb{L}^3$. In particular, we show a reflection principle for isotropic line segments on such zero mean curvature surfaces in $\mathbb{I}^3$, along which the induced metrics become singular.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源