论文标题

部分可观测时空混沌系统的无模型预测

Complementary Bi-directional Feature Compression for Indoor 360° Semantic Segmentation with Self-distillation

论文作者

Zheng, Zishuo, Lin, Chunyu, Nie, Lang, Liao, Kang, Shen, Zhijie, Zhao, Yao

论文摘要

最近,基于水平表示的全景语义分割方法超过了基于投影的解决方案,因为可以通过在垂直方向上压缩球形数据来有效地消除畸变。但是,这些方法忽略了之前的失真分布,并且仅限于不平衡的接收场,例如,接收场在垂直方向上足够,并且在水平方向上不足。不同的是,沿另一个方向压缩的垂直表示可以提供隐式失真先验,并扩大水平接受场。在本文中,我们将两种不同的表示形式结合在一起,并从互补的角度提出了一种新颖的360°语义分割解决方案。我们的网络包括三个模块:特征提取模块,一个双向压缩模块和一个集合解码模块。首先,我们从Panorama中提取多尺度功能。然后,设计一个双向压缩模块,将特征压缩为两个互补的低维表示,这些表示提供了内容感知和失真。此外,为了促进双向特征的融合,我们在合奏解码模块中设计了独特的自我蒸馏策略,以增强不同特征的相互作用并进一步提高性能。实验结果表明,我们的方法的表现优于最先进的解决方案,在定量评估方面至少提高了10 \%,同时显示出视觉外观上最佳性能。

Recently, horizontal representation-based panoramic semantic segmentation approaches outperform projection-based solutions, because the distortions can be effectively removed by compressing the spherical data in the vertical direction. However, these methods ignore the distortion distribution prior and are limited to unbalanced receptive fields, e.g., the receptive fields are sufficient in the vertical direction and insufficient in the horizontal direction. Differently, a vertical representation compressed in another direction can offer implicit distortion prior and enlarge horizontal receptive fields. In this paper, we combine the two different representations and propose a novel 360° semantic segmentation solution from a complementary perspective. Our network comprises three modules: a feature extraction module, a bi-directional compression module, and an ensemble decoding module. First, we extract multi-scale features from a panorama. Then, a bi-directional compression module is designed to compress features into two complementary low-dimensional representations, which provide content perception and distortion prior. Furthermore, to facilitate the fusion of bi-directional features, we design a unique self distillation strategy in the ensemble decoding module to enhance the interaction of different features and further improve the performance. Experimental results show that our approach outperforms the state-of-the-art solutions with at least 10\% improvement on quantitative evaluations while displaying the best performance on visual appearance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源