论文标题

部分可观测时空混沌系统的无模型预测

Global well-posedness and asymptotic behavior in critical spaces for the compressible Euler system with velocity alignment

论文作者

Bai, Xiang, Miao, Qianyun, Tan, Changhui, Xue, Liutang

论文摘要

在本文中,我们研究了具有强烈奇异速度比对的可压缩欧拉系统的库奇问题。我们证明了具有少量初始数据的关键空间中全球解决方案的存在和独特性。还解决了本地时间的可解决性。此外,我们将大量渐近行为和解决方案的最佳衰减估计值为$ t \至\ infty $。

In this paper, we study the Cauchy problem of the compressible Euler system with strongly singular velocity alignment. We prove the existence and uniqueness of global solutions in critical Besov spaces to the considered system with small initial data. The local-in-time solvability is also addressed. Moreover, we show the large-time asymptotic behavior and optimal decay estimates of the solutions as $t\to \infty$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源