论文标题

部分可观测时空混沌系统的无模型预测

Chairs Can be Stood on: Overcoming Object Bias in Human-Object Interaction Detection

论文作者

Wang, Guangzhi, Guo, Yangyang, Wong, Yongkang, Kankanhalli, Mohan

论文摘要

在图像中检测人对象相互作用(HOI)是迈向高级视觉理解的重要一步。现有工作通常会阐明改善人类和对象检测或互动识别。但是,由于数据集的限制,这些方法往往非常适合在检测到的对象的频繁相互作用上,但在很大程度上忽略了稀有的对象,这在本文中被称为对象偏见问题。在这项工作中,我们第一次从两个方面揭示了问题:不平衡的相互作用分布和有偏见的模型学习。为了克服对象偏置问题,我们提出了一种新颖的插件插件,可以通过对象进行重新平衡检测到对象下的相互作用的分布。拟议的ODM配备了精心设计的读写策略,可以更频繁地对训练进行稀有的互动实例,从而减轻不平衡交互分布引起的对象偏差。我们将此方法应用于三个高级基线,并在HICO-DET和HOI-COCO数据集上进行实验。为了定量研究对象偏见问题,我们主张一种用于评估模型性能的新协议。正如实验结果所证明的那样,我们的方法给基准带来了一致和显着的改进,尤其是在每个物体下方的罕见相互作用上。此外,在评估常规标准设置时,我们的方法在两个基准测试中实现了新的最新方法。

Detecting Human-Object Interaction (HOI) in images is an important step towards high-level visual comprehension. Existing work often shed light on improving either human and object detection, or interaction recognition. However, due to the limitation of datasets, these methods tend to fit well on frequent interactions conditioned on the detected objects, yet largely ignoring the rare ones, which is referred to as the object bias problem in this paper. In this work, we for the first time, uncover the problem from two aspects: unbalanced interaction distribution and biased model learning. To overcome the object bias problem, we propose a novel plug-and-play Object-wise Debiasing Memory (ODM) method for re-balancing the distribution of interactions under detected objects. Equipped with carefully designed read and write strategies, the proposed ODM allows rare interaction instances to be more frequently sampled for training, thereby alleviating the object bias induced by the unbalanced interaction distribution. We apply this method to three advanced baselines and conduct experiments on the HICO-DET and HOI-COCO datasets. To quantitatively study the object bias problem, we advocate a new protocol for evaluating model performance. As demonstrated in the experimental results, our method brings consistent and significant improvements over baselines, especially on rare interactions under each object. In addition, when evaluating under the conventional standard setting, our method achieves new state-of-the-art on the two benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源