论文标题

Navier-Stokes液体中弹簧安装身体的流动诱导振荡的数学分析

Mathematical Analysis of Flow-Induced Oscillations of a Spring-Mounted Body in a Navier-Stokes Liquid

论文作者

Galdi, Giovanni Paolo

论文摘要

我们在粘性液体$ \ Mathscr l $的流中研究刚体$ \ mathscr b $的运动。耦合系统的运动$ \ MATHSCR B $ - $ \ MATHSCR L \ equiv \ MATHSCR S $由空间无限的$ \ Mathscr l $均匀流动驱动,其特征是给定的,常数的无尺寸无尺寸速度$λ\,\ bfe_1 $,$ bfe_1 $,$λ$,$λ> 0 $ 0。我们表明,只要$λ\ in(0,λ_c)$,$λ_c$一个独特的正数,就有一个唯一确定的时间独立于$ \ mathscr s $的状态,其中$ \ mathscr b $处于(本地)稳定的平衡和$ \ mathscr l $的流量。此外,在$λ$的范围内,可能不会发生振荡流。依次证明,如果满足相关线性操作员的某些合适的光谱特性,则存在$λ_0>λ_c> 0 $,其中$ \ mathscr s $设置的振荡性态度更加精确。更确切地说,是在时间依赖于时间依赖性的解决方案的情况下,一个分叉的时间隔离的分支。该结果的重要特征是,{\ em no}限制是对分叉解决方案的频率($ω$)施加的,因此可能与自然结构频率($ \ sf n} $,$ \ mathscr b $或IT的任何倍数相一致。这意味着由于谐振效应而无法发生戏剧性的结构故障。但是,我们的分析还表明,当$ω$变得足够接近$ω_ {\ sf n} $时,当$ \ nathscr l $的密度与$ \ mathscr b $相比,振动振幅可能会在极限上变得非常大。

We study the motion of a rigid body $\mathscr B$ subject to an undamped elastic restoring force, in the stream of a viscous liquid $\mathscr L$. The motion of the coupled system $\mathscr B$-$\mathscr L\equiv\mathscr S$ is driven by a uniform flow of $\mathscr L$ at spatial infinity, characterized by a given, constant dimensionless velocity $λ\,\bfe_1$, $λ>0$. We show that as long as $λ\in(0,λ_c)$, with $λ_c$ a distinct positive number, there is a uniquely determined time-independent state of $\mathscr S$ where $\mathscr B$ is in a (locally) stable equilibrium and the flow of $\mathscr L$ is steady. Moreover, in that range of $λ$, no oscillatory flow may occur. Successively we prove that if certain suitable spectral properties of the relevant linearized operator are met, there exists a $λ_0>λ_c> 0$ where an oscillatory regime for $\mathscr S$ sets in. More precisely, a bifurcating time-periodic branch stems out of the time-independent solution. The significant feature of this result is that {\em no} restriction is imposed on the frequency, $ω$, of the bifurcating solution, which may thus coincide with the natural structural frequency, $ω_{\sf n}$, of $\mathscr B$, or any multiple of it. This implies that a dramatic structural failure cannot take place due to resonance effects. However, our analysis also shows that when $ω$ becomes sufficiently close to $ω_{\sf n}$ the amplitude of oscillations can become very large in the limit when the density of $\mathscr L$ becomes negligible compared to that of $\mathscr B$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源