论文标题

算术孔的长度光谱的底部

Bottom of the Length Spectrum of Arithmetic Orbifolds

论文作者

Fraczyk, Mikolaj, Pham, Lam L.

论文摘要

我们证明,当且仅当Salem数字从$ 1 $中统一时,COCOCOCOCTACT算术晶格是统一离散的。我们还证明了半圣母谎言组的类似结果。最后,我们通过显示正常常数$δ(x)> 0 $的存在,阐明了算术Orbifold $γ\ backslash x $的长度底部结构的一些启示,以使封闭的地理位置长度短于$δ$的平方必须是$δ$的平方。

We prove that cocompact arithmetic lattices in a simple Lie group are uniformly discrete if and only if the Salem numbers are uniformly bounded away from $1$. We also prove an analogous result for semisimple Lie groups. Finally, we shed some light on the structure of the bottom of the length spectrum of an arithmetic orbifold $Γ\backslash X$ by showing the existence of a positive constant $δ(X)>0$ such that squares of lengths of closed geodesics shorter than $δ$ must be pairwise linearly dependent over $\mathbb Q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源