论文标题

基于变异能量的Xpinns用于脆性断裂的相位场分析

Variational energy based XPINNs for phase field analysis in brittle fracture

论文作者

Chakraborty, Ayan, Anitescu, Cosmin, Goswami, Somdatta, Zhuang, Xiaoying, Rabczuk, Timon

论文摘要

即使在二维问题的计算模拟中,建模骨折在计算上也很昂贵。因此,扩展可直接应用于实际应用至关重要的大型组件或系统的可用方法变得具有挑战性。在这项工作中。我们为变异物理信息的神经网络提出了域分解框架,以准确地近似使用相位场方法定义的裂纹路径。我们表明,耦合域的分解和自适应改进方案允许在最需要的地方集中数值努力:围绕裂纹传播的区域。不需要先验了解损害模式。在较小的子域中使用大量深神经网络或浅层神经网络的能力使所提出的方法可以并行化。此外,该框架与自适应非线性激活函数集成,从而增强网络的学习能力,并导致更快的收敛性。通过与工程断裂力学有关的三个示例,在数值上证明了该方法的效率。接受手稿后,将在GitHub上提供与手稿相关的所有代码。

Modeling fracture is computationally expensive even in computational simulations of two-dimensional problems. Hence, scaling up the available approaches to be directly applied to large components or systems crucial for real applications become challenging. In this work. we propose domain decomposition framework for the variational physics-informed neural networks to accurately approximate the crack path defined using the phase field approach. We show that coupling domain decomposition and adaptive refinement schemes permits to focus the numerical effort where it is most needed: around the zones where crack propagates. No a priori knowledge of the damage pattern is required. The ability to use numerous deep or shallow neural networks in the smaller subdomains gives the proposed method the ability to be parallelized. Additionally, the framework is integrated with adaptive non-linear activation functions which enhance the learning ability of the networks, and results in faster convergence. The efficiency of the proposed approach is demonstrated numerically with three examples relevant to engineering fracture mechanics. Upon the acceptance of the manuscript, all the codes associated with the manuscript will be made available on Github.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源