论文标题

使用透明导电氧化物的电动切换卡西米尔力

Electrically switchable Casimir forces using transparent conductive oxides

论文作者

Gong, Tao, Spreng, Benjamin, Camacho, Miguel, Liberal, Inigo, Engheta, Nader, Munday, Jeremy N.

论文摘要

电荷中性物体之间的卡西米尔力源自电磁场的量子真空波动,这对材料的电磁特性表现出严重的依赖。多年来,通过各种方法启用了对材料的光学特性的原位调节,并且在诸如电流调制,瞬态色彩产生,生物或化学感应等的多种应用中被广泛利用。然而,Casimir力调制受到较高的宽敞调节信号的困难而阻碍了Casimir Force调制。在这里,我们提出并研究了两种配置,这些配置允许通过由透明的导电氧化物(TCO)材料组成的金属 - 绝缘子 - 轴导剂(MIS)连接的电控来对Casimir力进行原位调节。通过打开和关闭门电压,预计将通过TCO层中的实质性电荷载体积累来预测> 400 pn的力调制,可以使用原子力显微镜(AFM)中的最新力量测量技术轻松测量。我们进一步研究了氧化物层厚度对力调制的影响,这表明氧化物层沉积的精细控制的重要性。我们的工作提供了一种有希望的途径,可通过实验可测量的力对比度调节Casimir效应原位。

Casimir forces between charge-neutral bodies originate from quantum vacuum fluctuations of electromagnetic fields, which exhibit a critical dependence on material's electromagnetic properties. Over the years, in-situ modulation of material's optical properties has been enabled through various means and has been widely exploited in a plethora of applications such as electro-optical modulation, transient color generation, bio- or chemical sensing, etc. Yet Casimir force modulation has been hindered by difficulty in achieving high modulation signals due to the broadband nature of the Casimir interaction. Here we propose and investigate two configurations that allow for in-situ modulation of Casimir forces through electrical gating of a metal-insulator-semiconductor (MIS) junction comprised of transparent conductive oxide (TCO) materials. By switching the gate voltage on and off, a force modulation of > 400 pN is predicted due to substantive charge carrier accumulation in the TCO layer, which can be easily measured using state-of-the-art force measurement techniques in an atomic force microscope (AFM). We further examine the influence of the oxide layer thickness on the force modulation, suggesting the importance of the fine control of the oxide layer deposition. Our work provides a promising pathway for modulating the Casimir effect in-situ with experimentally measurable force contrast.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源