论文标题

关于马尔可夫链光谱理论的教程

A Tutorial on the Spectral Theory of Markov Chains

论文作者

Seabrook, Eddie, Wiskott, Laurenz

论文摘要

马尔可夫链是一类概率模型,在定量科学中已广泛应用。这部分是由于它们的多功能性,但可以通过分析探测的便利性使其更加复杂。本教程为马尔可夫连锁店提供了深入的介绍,并探讨了它们与图形和随机步行的联系。我们利用从线性代数和图形论的工具来描述不同类型的马尔可夫链的过渡矩阵,特别着眼于探索与这些矩阵相对应的特征值和特征向量的属性。提出的结果与机器学习和数据挖掘中的许多方法有关,我们在各个阶段描述了这些方法。本文并没有本身就成为一项新颖的学术研究,而是提供了一些已知结果的集合以及一些新的概念。此外,该教程专注于向读者提供直觉,而不是正式的理解,并且仅假定对线性代数和概率理论的概念的基本曝光。因此,来自各种学科的学生和研究人员可以进入它。

Markov chains are a class of probabilistic models that have achieved widespread application in the quantitative sciences. This is in part due to their versatility, but is compounded by the ease with which they can be probed analytically. This tutorial provides an in-depth introduction to Markov chains, and explores their connection to graphs and random walks. We utilize tools from linear algebra and graph theory to describe the transition matrices of different types of Markov chains, with a particular focus on exploring properties of the eigenvalues and eigenvectors corresponding to these matrices. The results presented are relevant to a number of methods in machine learning and data mining, which we describe at various stages. Rather than being a novel academic study in its own right, this text presents a collection of known results, together with some new concepts. Moreover, the tutorial focuses on offering intuition to readers rather than formal understanding, and only assumes basic exposure to concepts from linear algebra and probability theory. It is therefore accessible to students and researchers from a wide variety of disciplines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源