论文标题

最大三角形图的最大尺寸,具有有限的最高度和匹配数

Maximum size of a triangle-free graph with bounded maximum degree and matching number

论文作者

Ahanjideh, Milad, Ekim, Tınaz, Yıldız, Mehmet Akif

论文摘要

Chvátal和Hanson(1976)以及Balachandran and Khare(2009)确定了一般图表的最大边缘和匹配数限制的最大数量。它遵循这些极端图的结构,这些结构决定该最大数字在不限于无爪图的情况下降低,到$ C_4 $ -FREE图或无三角形图是分别有趣的研究问题。前两个案件分别由Dibek,Ekim和Heggernes(2017)和Blair,Heggernes,Lima和D.Lokshtanov(2020年)解决。在本文中,我们专注于无三角形图。我们表明,与大多数无爪图和$ C_4 $的图形图不同,从极端图中禁止三角形的三角形会导致边缘数量严格减少,并增加了问题的硬度。我们提供一个公式,在所有情况下,最多$ d $的三角形图提供了最大数量的边缘,并且对于所有情况,对于所有情况下,$ d \ geq m $的最多$ m $,以及对于$ d \ m $带$ d \ d \ d \ leq 6 $ z(d)$ d \ z(d)\ leq m <2d $ z(d)$ z(d)$ z(d)$ p $ $ d $ $ d $ d $ d $ d $ d $ d $ d $ d $ d $/d. 4 $ d $ d $ d $ d $ d $ d $ d $ d. $ d $ d $ d $ d $ d $ d $ d $ d. $ d $ d.我们还为其余案例提供了整数编程公式,并且由于对该公式的进一步讨论,我们猜想我们提供的公式给出了无三角形的极端图的大小,也适用于这些开放式案例。

Determining the maximum number of edges under degree and matching number constraints have been solved for general graphs by Chvátal and Hanson (1976), and by Balachandran and Khare (2009). It follows from the structure of those extremal graphs that deciding whether this maximum number decreases or not when restricted to claw-free graphs, to $C_4$-free graphs or to triangle-free graphs are separately interesting research questions. The first two cases being already settled, respectively by Dibek, Ekim and Heggernes (2017), and by Blair, Heggernes, Lima and D.Lokshtanov (2020). In this paper we focus on triangle-free graphs. We show that unlike most cases for claw-free graphs and $C_4$-free graphs, forbidding triangles from extremal graphs causes a strict decrease in the number of edges and adds to the hardness of the problem. We provide a formula giving the maximum number of edges in a triangle-free graph with degree at most $d$ and matching number at most $m$ for all cases where $d\geq m$, and for the cases where $d<m$ with either $d\leq 6$ or $Z(d)\leq m < 2d$ where $Z(d)$ is a function of $d$ which is roughly $5d/4$. We also provide an integer programming formulation for the remaining cases and as a result of further discussion on this formulation, we conjecture that our formula giving the size of triangle-free extremal graphs is also valid for these open cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源