论文标题

声子的表现就像电子在热厅效应中的电子

Phonons behave like Electrons in the Thermal Hall Effect of the Cuprates

论文作者

Lyu, Liuke, Witczak-Krempa, William

论文摘要

当热流向施加热梯度的热量流动时,热大厅的效应已成为量子材料研究中的重要观察。最近的实验发现,在许多高温铜酸盐超导体中,包括莫特绝缘体内部的许多高温库层超导体中,大厅电导率$κ_{xy} $,但基本机制仍然未知。在这里,我们发现了反向热大厅电阻率的令人惊讶的线性温度依赖性,$ 1/ρ_h=-κ_{xx}^2/κ_{xy} $,在mott Insulating cuprates $ \ mathrm {la_2cuo_4} $和$ \ mathrm {la_2cuo_4} $和$ \ mathrm {sr_2cuo_2ccuo_2ccuo_2ccuo_2ccuo_2ccuo}我们还在nd-lsco的伪态状态下在平面外方向上发现了这种线性缩放,突出了声子的重要性。在电子掺杂的一侧,线性逆热大厅信号在NCCO和PCCO中出现在各种兴奋剂中,包括奇怪的金属。尽管这种依赖性是在巡回电子的简单DRUDE模型中产生的,但其起源在密切相关的Mott绝缘或假态状态下尚不清楚。我们对结合偏斜散发的声子执行了玻尔兹曼分析,并且我们能够识别出出现线性$ t underse hall电阻率的制度。最后,我们建议将来的实验,以进一步了解铜矿中的热运输和其他量子材料。

The thermal Hall effect, which arises when heat flows transverse to an applied thermal gradient, has become an important observable in the study of quantum materials. Recent experiments found a large thermal Hall conductivity $κ_{xy}$ in many high-temperature cuprate superconductors, including deep inside the Mott insulator, but the underlying mechanism remains unknown. Here, we uncover a surprising linear temperature dependence for the inverse thermal Hall resistivity, $1/ρ_H=-κ_{xx}^2/κ_{xy}$, in the Mott insulating cuprates $\mathrm{La_2CuO_4}$ and $\mathrm{Sr_2CuO_2Cl_2}$. We also find this linear scaling in the pseudogap state of Nd-LSCO in the out-of-plane direction, highlighting the importance of phonons. On the electron-doped side, the linear inverse thermal Hall signal emerges in NCCO and PCCO at various dopings, including in the strange metal. Although such dependence arises in the simple Drude model for itinerant electrons, its origin is unclear in strongly correlated Mott insulating or pseudogap states. We perform a Boltzmann analysis for phonons that incorporates skew-scattering, and we are able to identify regimes where a linear $T$ inverse Hall resistivity appears. Finally, we suggest future experiments that would further our fundamental understanding of heat transport in the cuprates, and other quantum materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源