论文标题

检测和恢复顺序的深击操作

Detecting and Recovering Sequential DeepFake Manipulation

论文作者

Shao, Rui, Wu, Tianxing, Liu, Ziwei

论文摘要

由于如今的面部操纵技术可以很容易地产生逼真的面孔,因此对这些技术的潜在恶意滥用引起了极大的关注。因此,提出了许多深泡检测方法。但是,现有方法仅着眼于检测一步面部操作。随着易于访问的面部编辑应用的出现,人们可以使用多步操作以依次的方式轻松操纵面部组件。这种新威胁要求我们检测一系列面部操作,这对于发现深冰媒体和之后恢复原始面孔至关重要。在这一观察结果的推动下,我们强调了需求,并提出了一个新的研究问题,称为检测顺序的Deepfake操纵(Seq-Deepfake)。与仅需要二进制标签预测的现有深层检测任务不同,检测Seq-Deepfake操作需要正确预测面部操作操作的顺序向量。为了支持大规模研究,我们构建了第一个Seq-Deepfake数据集,在该数据集中,通过顺序面部操纵向量的相应注释,将面部图像顺序操纵。基于此新数据集,我们将检测到Seq-Deepfake操作作为特定的图像到序列(例如图像字幕)任务,并提出简洁但有效的Seq-Deepfake Transferaler(SEQFAKEFORMER)。此外,我们为这个新的研究问题建立了全面的基准,并为这个新的研究问题设置了严格的评估协议和指标。广泛的实验证明了seqfakeformer的有效性。还揭示了几种有价值的观察结果,以促进更广泛的深层检测问题的未来研究。

Since photorealistic faces can be readily generated by facial manipulation technologies nowadays, potential malicious abuse of these technologies has drawn great concerns. Numerous deepfake detection methods are thus proposed. However, existing methods only focus on detecting one-step facial manipulation. As the emergence of easy-accessible facial editing applications, people can easily manipulate facial components using multi-step operations in a sequential manner. This new threat requires us to detect a sequence of facial manipulations, which is vital for both detecting deepfake media and recovering original faces afterwards. Motivated by this observation, we emphasize the need and propose a novel research problem called Detecting Sequential DeepFake Manipulation (Seq-DeepFake). Unlike the existing deepfake detection task only demanding a binary label prediction, detecting Seq-DeepFake manipulation requires correctly predicting a sequential vector of facial manipulation operations. To support a large-scale investigation, we construct the first Seq-DeepFake dataset, where face images are manipulated sequentially with corresponding annotations of sequential facial manipulation vectors. Based on this new dataset, we cast detecting Seq-DeepFake manipulation as a specific image-to-sequence (e.g. image captioning) task and propose a concise yet effective Seq-DeepFake Transformer (SeqFakeFormer). Moreover, we build a comprehensive benchmark and set up rigorous evaluation protocols and metrics for this new research problem. Extensive experiments demonstrate the effectiveness of SeqFakeFormer. Several valuable observations are also revealed to facilitate future research in broader deepfake detection problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源