论文标题

解决SU(3),SU(4)和SP(2)组的矩阵指数函数

Solving the matrix exponential function for the groups SU(3), SU(4) and Sp(2)

论文作者

Kaiser, Norbert

论文摘要

$ su(2)$矩阵$ u = \ exp(i \ vecτ\!\ cdot \!\vecφ\,)= \ cos | \vecφ\,| + i \vecτ\!\ cdot \! \hatφ\,\ sin | \vecφ\,| $ \\扩展到具有八个真实参数的$ su(3)$组。所得的分析公式涉及在立方方程的三个真实根上的总和,与所谓的不可减至的情况相对应,其中一个人必须采用角度的分解。当进入带有15个真实计划的特殊统一组$ su(4)$时,分析公式涉及四个四重程方程的四个真正根源的总和。具有三个正根的相关立方分解方程再次属于不可约的情况。此外,通过将相关条件强加于$ su(4)$矩阵,也可以使用十个真实参数来对待Symplectic Group $ sp(2)$。由于根部以两对相反的符号出现,因此这简化了$ sp(2)$矩阵的分析公式。还提供了$ SU(5)$,$ SU(6)$和$ sp(3)$的分析公式的前景。

The well known analytical formula for $SU(2)$ matrices $U = \exp(i \vec τ\!\cdot\! \vec φ\,) = \cos|\vec φ\,| + i\vec τ\!\cdot\! \hatφ\, \sin|\vec φ\,|$\\ is extended to the $SU(3)$ group with eight real parameters. The resulting analytical formula involves the sum over three real roots of a cubic equation, corresponding to the so-called irreducible case, where one has to employ the trisection of an angle. When going to the special unitary group $SU(4)$ with 15 real prameters, the analytical formula involves the sum over four real roots of a quartic equation. The associated cubic resolvent equation with three positive roots belongs again to the irreducible case. Furthermore, by imposing the pertinent condition on $SU(4)$ matrices one can also treat the symplectic group $Sp(2)$ with ten real parameters. Since there the roots occur as two pairs of opposite sign, this simplifies the analytical formula for $Sp(2)$ matrices considerably. An outlook to the situation with analytical formulas for $SU(5)$, $SU(6)$ and $Sp(3)$ is also given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源