论文标题

多核弹性光学网络中的资源分配:一种深厚的增强学习方法

Resource Allocation in Multicore Elastic Optical Networks: A Deep Reinforcement Learning Approach

论文作者

Pinto-Ríos, Juan, Calderón, Felipe, Leiva, Ariel, Hermosilla, Gabriel, Beghelli, Alejandra, Bórquez-Paredes, Danilo, Lozada, Astrid, Jara, Nicolás, Olivares, Ricardo, Saavedra, Gabriel

论文摘要

首次采用了深入的增强学习方法来解决动态多核心纤维弹性光学网络(MCF-eons)中的路由,调制,频谱和核心分配(RMSCA)问题。为此,设计和实施了一个与OpenAI的健身房兼容的新环境,以模仿MCF -eons的运行。新环境通过考虑网络状态和与物理层相关的方面来处理代理动作(选择路线,核心和光谱插槽)。后者包括可用的调制格式及其覆盖范围以及与MCF相关的损伤的核心间串扰(XT)。如果信号的产生质量是可以接受的,则环境将分配代理选择的资源。处理代理的操作后,环境被配置为为代理提供有关新网络状态的数值奖励和信息。通过仿真将四个不同药物的阻塞性能与MCF-eons中使用的3个基线启发式方法进行了比较。 NSFNET和COST239网络拓扑获得的结果表明,表现最佳的代理平均而言,在阻止最佳基线启发式方法的阻止概率方面,最多可达到四倍的降低。

A deep reinforcement learning approach is applied, for the first time, to solve the routing, modulation, spectrum and core allocation (RMSCA) problem in dynamic multicore fiber elastic optical networks (MCF-EONs). To do so, a new environment - compatible with OpenAI's Gym - was designed and implemented to emulate the operation of MCF-EONs. The new environment processes the agent actions (selection of route, core and spectrum slot) by considering the network state and physical-layer-related aspects. The latter includes the available modulation formats and their reach and the inter-core crosstalk (XT), an MCF-related impairment. If the resulting quality of the signal is acceptable, the environment allocates the resources selected by the agent. After processing the agent's action, the environment is configured to give the agent a numerical reward and information about the new network state. The blocking performance of four different agents was compared through simulation to 3 baseline heuristics used in MCF-EONs. Results obtained for the NSFNet and COST239 network topologies show that the best-performing agent achieves, on average, up to a four-times decrease in blocking probability concerning the best-performing baseline heuristic methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源