论文标题
Riemann求解器用于可压缩尖锐地面方法中的相变
Riemann Solvers for Phase Transition in a Compressible Sharp-Interface Method
论文作者
论文摘要
在本文中,我们考虑了基于Euler-Fourier方程系统具有相变效应的Riemann求解器。通过通过经典不可逆热力学理论对相变过程进行建模,可以获得两相riemann问题的一个精确和两个近似解。闭合是通过适当的Onsager系数来蒸发和冷凝的。我们在尖锐的接地级幽灵液中使用拟议的Riemann求解器彼此对彼此息息。 Riemann求解器通过蒸发Lennard-Jones截断和移动流体的分子动力学数据进行了验证。我们进一步研究了相变与新型近似Riemann求解器的冲击滴度相互作用的影响。
In this paper, we consider Riemann solvers with phase transition effects based on the Euler-Fourier equation system. One exact and two approximate solutions of the two-phase Riemann problem are obtained by modelling the phase transition process via the theory of classical irreversible thermodynamics. Closure is obtained by appropriate Onsager coefficients for evaporation and condensation. We use the proposed Riemann solvers in a sharp-interface level-set ghost fluid method to couple the individual phases with each other. The Riemann solvers are validated against molecular dynamics data of evaporating Lennard-Jones truncated and shifted fluid. We further study the effects of phase transition on a shock-drop interaction with the novel approximate Riemann solvers.