论文标题

基于变压器的模型,用于大脑MR图像中无监督的异常分割

Transformer based Models for Unsupervised Anomaly Segmentation in Brain MR Images

论文作者

Ghorbel, Ahmed, Aldahdooh, Ahmed, Albarqouni, Shadi, Hamidouche, Wassim

论文摘要

与诊断放射学相关的患者护理质量与医师工作量成正比。分割是诊断和治疗程序的基本限制前体。机器学习的进步(ML)旨在通过用广义算法替换单个应用程序来提高诊断效率。无监督的异常检测(UAD)的目的是确定训练期间未见的潜在异常区域,其中基于卷积神经网络(CNN)的自动编码器(AES)和变异自动编码器(VAE)被认为是基于介绍的基于基于介绍的方法的事实方法。 CNN中受限制的接收场限制了CNN对全球环境进行建模。因此,如果异常区域涵盖图像的大部分,则基于CNN的AE将无法带来对图像的语义理解。同时,视觉变压器(VIT)已成为CNN的竞争替代品。它依赖于可以将图像斑块相互关联的自我发挥机制。我们在本文中调查了Transformer在为基于重建的UAD任务构建AE的功能中,以重建连贯和更现实的图像。我们专注于用于大脑磁共振成像(MRI)的异常分割,并呈现五个基于变压器的模型,同时可以使分割性能与最新的(SOTA)模型相当或优越。源代码可在GitHub上公开提供:https://github.com/ahmedgh970/transformers_unsupervise_anomaly_segentation.git。

The quality of patient care associated with diagnostic radiology is proportionate to a physician workload. Segmentation is a fundamental limiting precursor to both diagnostic and therapeutic procedures. Advances in machine learning (ML) aim to increase diagnostic efficiency by replacing a single application with generalized algorithms. The goal of unsupervised anomaly detection (UAD) is to identify potential anomalous regions unseen during training, where convolutional neural network (CNN) based autoencoders (AEs) and variational autoencoders (VAEs) are considered a de facto approach for reconstruction based-anomaly segmentation. The restricted receptive field in CNNs limits the CNN to model the global context. Hence, if the anomalous regions cover large parts of the image, the CNN-based AEs are not capable of bringing a semantic understanding of the image. Meanwhile, vision transformers (ViTs) have emerged as a competitive alternative to CNNs. It relies on the self-attention mechanism that can relate image patches to each other. We investigate in this paper Transformer capabilities in building AEs for the reconstruction-based UAD task to reconstruct a coherent and more realistic image. We focus on anomaly segmentation for brain magnetic resonance imaging (MRI) and present five Transformer-based models while enabling segmentation performance comparable to or superior to state-of-the-art (SOTA) models. The source code is made publicly available on GitHub: https://github.com/ahmedgh970/Transformers_Unsupervised_Anomaly_Segmentation.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源