论文标题
LOG的某些类别的收缩属性 - $ \ MATHCAL {M} - $ subharmonic函数在$ \ Mathbb {r}^n $中的单位球中
Contraction property of certain classes of log-$\mathcal{M}-$subharmonic functions in the unit ball in $\mathbb{R}^n$
论文作者
论文摘要
我们证明了某些类别的平滑函数的收缩特性,其元素的绝对值是单位球中的对数 - hyperharmonic函数,从而将kulikov的结果扩展到了高维空间(GAFA(GAFA(2022)))。此外,通过应用这些结果,我们在复杂平面中获得了一些新的结果。
We prove a contraction property of certain classes of smooth functions, whose absolute values of elements are log-hyperharmonic functions in the unit ball, thus extending the results of Kulikov to higher-dimensional space (GAFA (2022)). Moreover, by applying those results we get some new results for harmonic mappings in the complex plane.