论文标题
通过隐藏的马尔可夫模型进行数据驱动的转向扭矩行为建模
Data-driven Steering Torque Behaviour Modelling with Hidden Markov Models
论文作者
论文摘要
现代高级驾驶员援助系统(ADAS)的考虑能力有限,从而实现驾驶员意图,从而导致不自然的指导和客户接受率低。在这项研究中,我们专注于一种新型的数据驱动方法来预测驱动器转向扭矩。特别是,通过学习隐藏的马尔可夫模型(HMM)的参数来建模驱动器行为,并使用高斯混合回归(GMR)进行估计。广泛的参数选择框架使我们能够客观地选择模型超参数并防止过度拟合。最终模型行为通过精度和平滑度之间的成本函数平衡进行了优化。使用Toyota Motor Europe的静态驾驶模拟器获得了涵盖七个参与者的自然主义驾驶数据,以训练,评估和测试拟议的模型。结果表明,与基线相比,我们的方法达到了92%的转向扭矩精度,信号平滑度增加了37%,数据少90%。此外,我们的模型捕获了从新手到专家驱动因素的复杂和非线性人类行为以及驱动器间的变化,这表明了成为未来以用户为导向的ADA的转向性能预测指标的有趣潜力。
Modern Advanced Driver Assistance Systems (ADAS) are limited in their ability to consider the drivers intention, resulting in unnatural guidance and low customer acceptance. In this research, we focus on a novel data-driven approach to predict driver steering torque. In particular, driver behavior is modeled by learning the parameters of a Hidden Markov Model (HMM) and estimation is performed with Gaussian Mixture Regression (GMR). An extensive parameter selection framework enables us to objectively select the model hyper-parameters and prevents overfitting. The final model behavior is optimized with a cost function balancing between accuracy and smoothness. Naturalistic driving data covering seven participants is obtained using a static driving simulator at Toyota Motor Europe for the training, evaluation, and testing of the proposed model. The results demonstrate that our approach achieved a 92% steering torque accuracy with a 37% increase in signal smoothness and 90% fewer data compared to a baseline. In addition, our model captures the complex and nonlinear human behavior and inter-driver variability from novice to expert drivers, showing an interesting potential to become a steering performance predictor in future user-oriented ADAS.