论文标题
大量碰撞风二进制和风能比的影响
Accretion in massive colliding wind binaries and the effect of wind momentum ratio
论文作者
论文摘要
我们进行了一个数值实验,该实验在巨大的碰撞风二进制系统中弹出风,并在不同的一级质量损失率下量化上的积聚到次级恒星。我们将一个包括发光蓝色变量(LBV)的二进制系统设置为主要和狼射线(WR)恒星,并改变LBV的质量损失率,以获得不同的风动量比率$η$。我们的模拟包括两组案例:一组恒星是固定的,另一组包括轨道运动。随着$η$的减少,碰撞的风结构移动到次要。我们发现,对于$η\ Lessim 0.05 $,达到了积分阈值,并且源自不稳定性的团块被积聚到次级上。对于$η$的每个值,我们计算质量积聚率,并确定$ \ dot {m} _ {\ rm acc} $ - $η$图中的不同区域。以$ 0.001 \ Lessimη\ Lessim 0.05 $,增生为子邦迪 - hoyle-lyttleton(bhl),平均增生率满足了PowerLaw $ \ dot {m} _ {\ rm acc acc} _ {\ rm Acc} \ propto proptoη^{-1.73} $ for Static for Statatic for Statatic Startic of Startic Stars $。积聚不是连续的,而是随着$η$的减少而从零星变为更大的占空比。对于$η\ lyssim0.001 $,积聚会随着时间的流逝而连续,积聚率为BHL,最高为0.4---0.8。包括轨道运动的模拟在定性上给出了相似的结果,较陡的功率定律$ \ dot {m} _ {\ rm acc} \ proptoη^{ - 1.86} $对于$ bhl区域,较低的$η$作为积分阈值。
We carry out a numerical experiment of ejecting winds in a massive colliding wind binary system, and quantifying the accretion onto the secondary star under different primary mass loss rates. We set a binary system comprising a Luminous Blue Variable (LBV) as the primary and a Wolf-Rayet (WR) star as the secondary, and vary the mass loss rate of the LBV to obtain different values of wind momentum ratio $η$. Our simulations include two sets of cases: one where the stars are stationary, and one that includes the orbital motion. As $η$ decreases the colliding wind structure moves closer to the secondary. We find that for $η\lesssim 0.05$ the accretion threshold is reached and clumps which originate by instabilities are accreted onto the secondary. For each value of $η$ we calculate the mass accretion rate and identify different regions in the $\dot{M}_{\rm acc}$ - $η$ diagram. For $0.001 \lesssim η\lesssim 0.05$ the accretion is sub- Bondi-Hoyle-Lyttleton (BHL) and the average accretion rate satisfies the power-law $\dot{M}_{\rm acc} \propto η^{-1.73}$ for static stars. The accretion is not continuous but rather changes from sporadic to a larger duty cycle as $η$ decreases. For $η\lesssim0.001$ the accretion becomes continuous in time and the accretion rate is BHL, up to a factor of 0.4--0.8. The simulations that include the orbital motion give qualitatively similar results, with the steeper power law $\dot{M}_{\rm acc} \propto η^{-1.86}$ for the sub-BHL region and lower $η$ as an accretion threshold.