论文标题
Dualafford:学习双拖鞋操作的协作视觉负担能力
DualAfford: Learning Collaborative Visual Affordance for Dual-gripper Manipulation
论文作者
论文摘要
对于未来的家庭辅助机器人来说,在日常人类环境中理解和操纵各种3D对象是必不可少的。旨在构建可以在各种3D形状上执行各种操纵任务的可扩展系统,最近的作品提倡并展示了令人鼓舞的结果,学习视觉可行的可行负担能力,它标记了输入3D几何学上的每个点,并具有完成下游任务的动作可能性(例如,推动或拾取)。但是,这些作品仅研究了单脚架的操纵任务,但是许多现实世界的任务需要两只手才能协作。在这项工作中,我们提出了一个新颖的学习框架Dualafford,以学习双手操纵任务的协作负担。该方法的核心设计是将两个抓地力的二次问题减少到两个分开但相互联系的子任务以进行有效学习。使用大规模的partnet-Mobility和Shapenet数据集,我们设置了四个基准任务,以进行双手操作。实验证明了我们方法比三个基线的有效性和优越性。
It is essential yet challenging for future home-assistant robots to understand and manipulate diverse 3D objects in daily human environments. Towards building scalable systems that can perform diverse manipulation tasks over various 3D shapes, recent works have advocated and demonstrated promising results learning visual actionable affordance, which labels every point over the input 3D geometry with an action likelihood of accomplishing the downstream task (e.g., pushing or picking-up). However, these works only studied single-gripper manipulation tasks, yet many real-world tasks require two hands to achieve collaboratively. In this work, we propose a novel learning framework, DualAfford, to learn collaborative affordance for dual-gripper manipulation tasks. The core design of the approach is to reduce the quadratic problem for two grippers into two disentangled yet interconnected subtasks for efficient learning. Using the large-scale PartNet-Mobility and ShapeNet datasets, we set up four benchmark tasks for dual-gripper manipulation. Experiments prove the effectiveness and superiority of our method over three baselines.