论文标题

ACT网络:半监督记忆效率的医学图像分段的非对称共同教学网络

ACT-Net: Asymmetric Co-Teacher Network for Semi-supervised Memory-efficient Medical Image Segmentation

论文作者

Zhao, Ziyuan, Zhu, Andong, Zeng, Zeng, Veeravalli, Bharadwaj, Guan, Cuntai

论文摘要

尽管深层模型在医学图像分割中表现出了有希望的性能,但它们在很大程度上依赖大量宣布的数据,这很难访问,尤其是在临床实践中。另一方面,高准确的深层模型通常有大型模型大小,从而在实际情况下限制了他们的工作。在这项工作中,我们提出了一个新颖的不对称联合教师框架ACT-NET,以减轻半监督知识蒸馏的昂贵注释和计算成本的负担。我们通过共同教师网络推进教师学习的学习,以通过交替的学生和教师角色来促进从大型模型到小型模型的不对称知识蒸馏,从而获得了微小但准确的临床就业模型。为了验证我们的行动网络的有效性,我们在实验中采用了ACDC数据集进行心脏子结构分段。广泛的实验结果表明,ACT-NET的表现优于其他知识蒸馏方法,并获得无损分割性能,参数少250倍。

While deep models have shown promising performance in medical image segmentation, they heavily rely on a large amount of well-annotated data, which is difficult to access, especially in clinical practice. On the other hand, high-accuracy deep models usually come in large model sizes, limiting their employment in real scenarios. In this work, we propose a novel asymmetric co-teacher framework, ACT-Net, to alleviate the burden on both expensive annotations and computational costs for semi-supervised knowledge distillation. We advance teacher-student learning with a co-teacher network to facilitate asymmetric knowledge distillation from large models to small ones by alternating student and teacher roles, obtaining tiny but accurate models for clinical employment. To verify the effectiveness of our ACT-Net, we employ the ACDC dataset for cardiac substructure segmentation in our experiments. Extensive experimental results demonstrate that ACT-Net outperforms other knowledge distillation methods and achieves lossless segmentation performance with 250x fewer parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源