论文标题
人类对象相互作用检测中的距离事项
Distance Matters in Human-Object Interaction Detection
论文作者
论文摘要
人类对象的相互作用(HOI)检测在场景理解的背景下受到了很大的关注。尽管基准上的进步越来越高,但我们意识到现有方法通常在遥远的相互作用上表现不佳,其中主要原因是两倍:1)遥远的相互作用本质上比亲密的相互作用更难以识别。一个自然的场景通常涉及多个人类和具有复杂空间关系的对象,从而使遥远的人类对象的互动识别在很大程度上受复杂的视觉背景影响。 2)基准数据集中的远处相互作用不足会导致这些实例不合格。为了解决这些问题,在本文中,我们提出了一种新型的两阶段方法,用于更好地处理HOI检测中的遥远相互作用。我们方法中的一个必不可少的组成部分是一个新颖的近距离注意模块。它可以在人类和物体之间进行信息传播,从而熟练考虑空间距离。此外,我们设计了一种新颖的远距离感知损失函数,该功能使模型更加专注于遥远而罕见的相互作用。我们对两个具有挑战性的数据集进行了广泛的实验-HICO-DET和V-COCO。结果表明,所提出的方法可以通过很大的利润来超越现有方法,从而导致新的最新性能。
Human-Object Interaction (HOI) detection has received considerable attention in the context of scene understanding. Despite the growing progress on benchmarks, we realize that existing methods often perform unsatisfactorily on distant interactions, where the leading causes are two-fold: 1) Distant interactions are by nature more difficult to recognize than close ones. A natural scene often involves multiple humans and objects with intricate spatial relations, making the interaction recognition for distant human-object largely affected by complex visual context. 2) Insufficient number of distant interactions in benchmark datasets results in under-fitting on these instances. To address these problems, in this paper, we propose a novel two-stage method for better handling distant interactions in HOI detection. One essential component in our method is a novel Far Near Distance Attention module. It enables information propagation between humans and objects, whereby the spatial distance is skillfully taken into consideration. Besides, we devise a novel Distance-Aware loss function which leads the model to focus more on distant yet rare interactions. We conduct extensive experiments on two challenging datasets - HICO-DET and V-COCO. The results demonstrate that the proposed method can surpass existing approaches by a large margin, resulting in new state-of-the-art performance.