论文标题

黑格 - Zhang类型Riemannian共轭梯度法的全局收敛

Global Convergence of Hager-Zhang type Riemannian Conjugate Gradient Method

论文作者

Sakai, Hiroyuki, Sato, Hiroyuki, Iiduka, Hideaki

论文摘要

本文介绍了使用指数缩回的Hager-Zhang(Hz)-riemannian缀合梯度方法。我们还在两种假设下对我们提出的方法进行了全局融合分析。此外,我们通过在单位球体上解决两种Riemannian优化问题来将我们提出的方法与现有方法进行比较。数值结果表明,我们所提出的方法的性能要比现有方法(即FR,DY,PRP和HS方法)好得多。特别是,他们表明它的性能比现有方法(包括混合方法计算图形问题的稳定性数字)的性能要高得多。

This paper presents the Hager-Zhang (HZ)-type Riemannian conjugate gradient method that uses the exponential retraction. We also present global convergence analyses of our proposed method under two kinds of assumptions. Moreover, we numerically compare our proposed methods with the existing methods by solving two kinds of Riemannian optimization problems on the unit sphere. The numerical results show that our proposed method has much better performance than the existing methods, i.e., the FR, DY, PRP and HS methods. In particular, they show that it has much higher performance than existing methods including the hybrid ones in computing the stability number of graphs problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源