论文标题

TABPFN:在第二秒钟解决小型表格分类问题的变压器

TabPFN: A Transformer That Solves Small Tabular Classification Problems in a Second

论文作者

Hollmann, Noah, Müller, Samuel, Eggensperger, Katharina, Hutter, Frank

论文摘要

我们提出了TABPFN,这是一种受过训练的变压器,可以在不到一秒钟的时间内对小表格数据集进行监督分类,不需要高参数调整,并且具有最先进的分类方法竞争。 TABPFN执行内部文本学习(ICL),它学习使用输入中给出的标记示例(x,f(x))的序列进行预测,而无需进一步的参数更新。 TABPFN完全符合我们网络的权重,该网络的权重接受培训和测试样本作为设定值的输入,并在单个正向通行中对整个测试集的预测产生预测。 TABPFN是先前的DATA拟合网络(PFN),并且一次离线训练,以近似从我们先前绘制的合成数据集进行贝叶斯推断。这一先验结合了因果推理的想法:它需要大量的结构性因果模型,偏爱简单的结构。在OpenML-CC18套件中的18个数据集上,该数据集包含多达1000个培训数据点,多达100个纯粹的数值功能而没有丢失值,最多10个类别,我们表明我们的方法清楚地超过了树木,并与相当的先进的最先进的自动符号系统相同,最高可达230美元的$ \ \ \ \ fimes $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ flosup。使用GPU时,这会增加到5 700 $ \ times $速度。我们还可以在OpenML的另外67个小数值数据集上验证这些结果。我们提供所有代码,训练有素的TABPFN,交互式浏览器演示以及https://github.com/automl/tabpfn上的COLAB笔记本。

We present TabPFN, a trained Transformer that can do supervised classification for small tabular datasets in less than a second, needs no hyperparameter tuning and is competitive with state-of-the-art classification methods. TabPFN performs in-context learning (ICL), it learns to make predictions using sequences of labeled examples (x, f(x)) given in the input, without requiring further parameter updates. TabPFN is fully entailed in the weights of our network, which accepts training and test samples as a set-valued input and yields predictions for the entire test set in a single forward pass. TabPFN is a Prior-Data Fitted Network (PFN) and is trained offline once, to approximate Bayesian inference on synthetic datasets drawn from our prior. This prior incorporates ideas from causal reasoning: It entails a large space of structural causal models with a preference for simple structures. On the 18 datasets in the OpenML-CC18 suite that contain up to 1 000 training data points, up to 100 purely numerical features without missing values, and up to 10 classes, we show that our method clearly outperforms boosted trees and performs on par with complex state-of-the-art AutoML systems with up to 230$\times$ speedup. This increases to a 5 700$\times$ speedup when using a GPU. We also validate these results on an additional 67 small numerical datasets from OpenML. We provide all our code, the trained TabPFN, an interactive browser demo and a Colab notebook at https://github.com/automl/TabPFN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源