论文标题
与时空RETAS模型的随机毁灭性地震
Stochastic declustering of earthquakes with the spatiotemporal RETAS model
论文作者
论文摘要
流行性型余震序列(ETA)模型是在地震学建模中发现突出的点过程。它的成功导致了许多不同版本的ETA模型的发展。这些扩展包括RETAS模型,该模型显示了提高ETAS模型类型的建模能力的潜力。 RETAS模型通过更新过程赋予了主冲击过程,该过程是均匀泊松过程的替代过程。通过直接优化确切的可能性,使用基于可能性的估计进行模型拟合。但是,从拟合的RETAS模型中推断分支结构仍然是一项具有挑战性的任务,因为当前可用于ETAS模型的解释算法不直接适用。本文通过开发一种迭代算法来解决此问题,以计算目录中包含的所有可用信息的条件,以计算平滑的主和余震概率。因此,可以获得空间强度函数的客观估计,并实施迭代的半参数方法,以估算模型参数,并使用用于调整平滑参数的信息标准。本文提出的方法在模拟数据和新西兰地震目录中进行了说明。
Epidemic-Type Aftershock Sequence (ETAS) models are point processes that have found prominence in seismological modeling. Its success has led to the development of a number of different versions of the ETAS model. Among these extensions is the RETAS model which has shown potential to improve the modeling capabilities of the ETAS class of models. The RETAS model endows the main-shock arrival process with a renewal process which serves as an alternative to the homogeneous Poisson process. Model fitting is performed using likelihood-based estimation by directly optimizing the exact likelihood. However, inferring the branching structure from the fitted RETAS model remains a challenging task since the declustering algorithm that is currently available for the ETAS model is not directly applicable. This article solves this problem by developing an iterative algorithm to calculate the smoothed main and aftershock probabilities conditional on all available information contained in the catalog. Consequently, an objective estimate of the spatial intensity function can be obtained and an iterative semi-parametric approach is implemented to estimate model parameters with information criteria used for tuning the smoothing parameters. The methods proposed herein are illustrated on simulated data and a New Zealand earthquake catalog.