论文标题
pl $ d $ -manifolds的半e equivelar宝石
Semi-equivelar gems of PL $d$-manifolds
论文作者
论文摘要
我们定义了$(p_0,p_1,\ dots,p_d)$ - 键入封闭连接的pl $ d $ - manifolds的type semi-equivelar宝石,与代表$ s $ s $ s $ s $ fertices cycycys fertices $γ$ quam $γ$的$ s $ s y ny y yes s y n yes s facecycles的$ quam $γ$的定期嵌入有关的$ d $ manifolds。该术语的灵感来自表面的半等级图。鉴于具有非负欧拉特征的表面$ s $,我们在$ s $上找到了所有常规嵌入类型,然后构建一种嵌入$ s $的每种类型的属属半e e eekeivelar Gem(如果存在)。此外,我们介绍了以下半等级宝石的结构: (1)对于每个封闭的连接表面$ s $,我们构建了一个代表$ s $的属的半e e e e e e夫属。特别是,对于$ s = \ #_ n(\ mathbb {s}^1 \ times \ times \ mathbb {s}^1)$($ \ #_ n(\#__ n(\ sathbb {rp}^2)$),半equivelar gem of类型$ $(4n+2)^3)$(questect $(soundited)$(questeed)$(2n)。 (2)对于封闭的连接定向PL $ D $ -Manifold $ m $(其中$ d \ geq 3 $)的常规属最多$ 1 $,我们表明$ m $允许当$ m $是镜头空间时,只有$ m $,只有$ m $。 此外,如果我们考虑使用$ 2 $ - g的半eKeeivelar宝石,那么对于封闭的连接定向$ d $ -d $ -manifold $ m $(其中$ d \ geq 3 $),带有$ \ mathcal {g}(g}(m)\ leq 1 $,$ m $,$ m $,允许属属属属于Minimal semimimal semimimal Equivelar Gem(with bigons)。
We define the notion of $(p_0,p_1,\dots,p_d)$-type semi-equivelar gems for closed connected PL $d$-manifolds, related to the regular embedding of gems $Γ$ representing $M$ on a surface $S$ such that the face-cycles at all the vertices of $Γ$ on $S$ are of the same type. The term is inspired by semi-equivelar maps of surfaces. Given a surface $S$ having non-negative Euler characteristic, we find all regular embedding types on $S$ and then construct a genus-minimal semi-equivelar gem (if it exists) of each such type embedded on $S$. Moreover, we present constructions of the following semi-equivelar gems: (1) For each closed connected surface $S$, we construct a genus-minimal semi-equivelar gem that represents $S$. In particular, for $S=\#_n (\mathbb{S}^1 \times \mathbb{S}^1)$ (resp., $\#_n(\mathbb{RP}^2)$), the semi-equivelar gem of type $((4n+2)^3)$ (resp., $((2n+2)^3)$) is constructed. (2) For a closed connected orientable PL $d$-manifold $M$ (where $d \geq 3$) of regular genus at most $1$, we show that $M$ admits a genus-minimal semi-equivelar gem if and only if $M$ is a lens space. Moreover, if we consider semi-equivelar gems with $2$-gons then for a closed connected orientable $d$-manifold $M$ (where $d \geq 3$) with $\mathcal{G}(M)\leq 1$, $M$ admits a genus-minimal semi-equivelar gem (with bigons).