论文标题

重新审视虚拟本地化

Virtual localization revisited

论文作者

Aranha, Dhyan, Khan, Adeel A., Latyntsev, Alexei, Park, Hyeonjun, Ravi, Charanya

论文摘要

让$ t $是用固定基因座$ z $的代数方案$ x $作用的拆分曲线。 Edidin和Graham表明,在本地化的$ t $ equivariant chow groups,(a)沿$ i:z \ to x $沿$ i:z \ to x $的推送$ i _*$是同构的,并且(b)当$ x $平滑时,倒置$(i _*)^{ - 1} $可以通过Gysin Rualdback $ i^$ i^$ i^$ i^$ i^$ e(普通捆绑包$ n $的Euler类。在本文中,我们表明(b)使用操作的虚拟版本$ i^!$和$( - )\ cap e(n)^{ - 1} $时,$ x $是一种准平滑派生方案(或deligne-mumford stack)。作为推论,我们证明了虚拟本地化公式$ [x]^{vir} = i_*([z]^{vir} \ cap e(n^{vir})^{ - 1})$ graber-pandharipande的$ graber-pandharipande,而没有全局分辨率,而无需全局分辨率。我们在(派生)堆栈中的固定基因座上包含一个附录,该附录应具有独立关注。

Let $T$ be a split torus acting on an algebraic scheme $X$ with fixed locus $Z$. Edidin and Graham showed that on localized $T$-equivariant Chow groups, (a) push-forward $i_*$ along $i : Z \to X$ is an isomorphism, and (b) when $X$ is smooth the inverse $(i_*)^{-1}$ can be described via Gysin pullback $i^!$ and cap product with $e(N)^{-1}$, the inverse of the Euler class of the normal bundle $N$. In this paper we show that (b) still holds when $X$ is a quasi-smooth derived scheme (or Deligne-Mumford stack), using virtual versions of the operations $i^!$ and $(-)\cap e(N)^{-1}$. As a corollary we prove the virtual localization formula $[X]^{vir} = i_* ([Z]^{vir} \cap e(N^{vir})^{-1})$ of Graber-Pandharipande without global resolution hypotheses and over arbitrary base fields. We include an appendix on fixed loci of group actions on (derived) stacks which should be of independent interest.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源