论文标题
重新审视虚拟本地化
Virtual localization revisited
论文作者
论文摘要
让$ t $是用固定基因座$ z $的代数方案$ x $作用的拆分曲线。 Edidin和Graham表明,在本地化的$ t $ equivariant chow groups,(a)沿$ i:z \ to x $沿$ i:z \ to x $的推送$ i _*$是同构的,并且(b)当$ x $平滑时,倒置$(i _*)^{ - 1} $可以通过Gysin Rualdback $ i^$ i^$ i^$ i^$ i^$ e(普通捆绑包$ n $的Euler类。在本文中,我们表明(b)使用操作的虚拟版本$ i^!$和$( - )\ cap e(n)^{ - 1} $时,$ x $是一种准平滑派生方案(或deligne-mumford stack)。作为推论,我们证明了虚拟本地化公式$ [x]^{vir} = i_*([z]^{vir} \ cap e(n^{vir})^{ - 1})$ graber-pandharipande的$ graber-pandharipande,而没有全局分辨率,而无需全局分辨率。我们在(派生)堆栈中的固定基因座上包含一个附录,该附录应具有独立关注。
Let $T$ be a split torus acting on an algebraic scheme $X$ with fixed locus $Z$. Edidin and Graham showed that on localized $T$-equivariant Chow groups, (a) push-forward $i_*$ along $i : Z \to X$ is an isomorphism, and (b) when $X$ is smooth the inverse $(i_*)^{-1}$ can be described via Gysin pullback $i^!$ and cap product with $e(N)^{-1}$, the inverse of the Euler class of the normal bundle $N$. In this paper we show that (b) still holds when $X$ is a quasi-smooth derived scheme (or Deligne-Mumford stack), using virtual versions of the operations $i^!$ and $(-)\cap e(N)^{-1}$. As a corollary we prove the virtual localization formula $[X]^{vir} = i_* ([Z]^{vir} \cap e(N^{vir})^{-1})$ of Graber-Pandharipande without global resolution hypotheses and over arbitrary base fields. We include an appendix on fixed loci of group actions on (derived) stacks which should be of independent interest.