论文标题
Bootstagping $ \ Mathcal {n} = 4 $ sym相关器使用集成性
Bootstrapping $\mathcal{N}=4$ sYM correlators using integrability
论文作者
论文摘要
需要多少光谱信息来确定共形理论的相关函数?我们在平面超对称的阳米尔斯理论的背景下研究了这个问题,在该理论中,整合性技术准确地确定了有限't Hooft耦合处的单个跟踪频谱。相应的OPE系数受到实现交叉对称性的分散总和规则的约束。为了关注四个应力调整多重组的相关因子,我们构建了确定单循环相关器的总和规则的组合,并研究了一个数值的自举问题,该问题非扰动地限制了平面OPE系数。我们在物理操作员的位置观察到有趣的尖尖,并且在扰动型外面的Konishi操作员的OPE系数上获得了一个非平凡的上限。
How much spectral information is needed to determine the correlation functions of a conformal theory? We study this question in the context of planar supersymmetric Yang-Mills theory, where integrability techniques accurately determine the single-trace spectrum at finite 't Hooft coupling. Corresponding OPE coefficients are constrained by dispersive sum rules, which implement crossing symmetry. Focusing on correlators of four stress-tensor multiplets, we construct combinations of sum rules which determine one-loop correlators, and we study a numerical bootstrap problem that nonperturbatively bounds planar OPE coefficients. We observe interesting cusps at the location of physical operators, and we obtain a nontrivial upper bound on the OPE coefficient of the Konishi operator outside the perturbative regime.