论文标题

具有无分配可靠性保证的建议系统

Recommendation Systems with Distribution-Free Reliability Guarantees

论文作者

Angelopoulos, Anastasios N., Krauth, Karl, Bates, Stephen, Wang, Yixin, Jordan, Michael I.

论文摘要

在构建推荐系统时,我们寻求向用户输出一套有用的项目。在引擎盖下,排名模型预测两个候选项目中的哪个更好,我们必须将这些成对比较提炼成面向用户的输出。但是,学习的排名模型从来都不是完美的,因此在面值下进行预测并不能保证面向用户的输出是可靠的。通过预先训练的排名模型构建,我们展示了如何返回一组严格保证包含好物品的项目。我们的过程将任何排名模型都具有严格的有限样本控制对错误发现率(FDR)的控制,无论(未知)数据分布如何。此外,我们的校准算法使推荐系统中的多个目标可以简单而原则地集成。例如,我们展示如何以用户指定的FDR控制水平优化推荐多样性,从而规避需要指定多样性损失的临时权重,而不是准确的损失。在整个过程中,我们专注于学习对一组可能的建议进行排名的问题,评估我们在Yahoo!上的方法!学习排名和MSMARCO数据集。

When building recommendation systems, we seek to output a helpful set of items to the user. Under the hood, a ranking model predicts which of two candidate items is better, and we must distill these pairwise comparisons into the user-facing output. However, a learned ranking model is never perfect, so taking its predictions at face value gives no guarantee that the user-facing output is reliable. Building from a pre-trained ranking model, we show how to return a set of items that is rigorously guaranteed to contain mostly good items. Our procedure endows any ranking model with rigorous finite-sample control of the false discovery rate (FDR), regardless of the (unknown) data distribution. Moreover, our calibration algorithm enables the easy and principled integration of multiple objectives in recommender systems. As an example, we show how to optimize for recommendation diversity subject to a user-specified level of FDR control, circumventing the need to specify ad hoc weights of a diversity loss against an accuracy loss. Throughout, we focus on the problem of learning to rank a set of possible recommendations, evaluating our methods on the Yahoo! Learning to Rank and MSMarco datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源