论文标题
在非弗米液体中的最小残留熵上
On minimal residual entropy in non-Fermi liquids
论文作者
论文摘要
在大的$ n $中,即使没有基态堕落,物理系统也可能在零温度下获得剩余熵。同时,两分函数中的极点可能会合并并形成分支切割。这两种现象都与$ n $限制的高密度有关。在此简短的说明中,我们解决了一个问题:在2分函数中切割的分支是否总是导致非零残留熵?我们认为,对于$ 0+1 $尺寸的通用费米,在平均场近似中的尺寸为正:分支切割$ 1/τ^{2δ} $在2分函数中确实导致了熵的下限$ n \ log {2}(1/2-δ)$。我们还评论了高维的概括以及与全息信函的关系。
In the large $N$ limit a physical system might acquire a residual entropy at zero temperature even without ground state degeneracy. At the same time poles in the 2-point function might coalesce and form a branch cut. Both phenomena are related to a high density of states in the large $N$ limit. In this short note we address the question: does a branch cut in the 2-point function always lead to non-zero residual entropy? We argue that for generic fermionic systems in $0+1$ dimensions in the mean-field approximation the answer is positive: branch cut $1/τ^{2Δ}$ in the 2-point function does lead to a lower bound $N \log{2}(1/2-Δ)$ for the entropy. We also comment on higher-dimensional generalizations and relations to the holographic correspondence.