论文标题

关于复杂反射组的准斯坦伯格字符

On Quasi Steinberg characters of Complex Reflection Groups

论文作者

Mishra, Ashish, Paul, Digjoy, Singla, Pooja

论文摘要

让$ g $为有限的群体,$ p $为划分$ g $的订单。如果$χ(g)$对于$ g $中的每$ p $ regribard $ g $ g $ n n n n零,则$ g $ $ g $的不可约性$χ$ $ g $。在本文中,我们对复杂反射组的$ g(r,q,n)$的Quasi $ P $ -Steinberg字符进行了分类。特别是,我们为$ b_n $和类型$ d_n $的Weyl组获得了此分类。

Let $G$ be a finite group and $p$ be a prime number dividing the order of $G$. An irreducible character $χ$ of $G$ is called a quasi $p$-Steinberg character if $χ(g)$ is nonzero for every $p$-regular element $g$ in $G$. In this paper, we classify quasi $p$-Steinberg characters of the complex reflection groups $G(r,q,n)$. In particular, we obtain this classification for Weyl groups of type $B_n$ and type $D_n$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源