论文标题

聚类二进制数据对推论方法研究的相对风险的影响

The impact of clustering binary data on relative risk towards a study of inferential methods

论文作者

Nath, Gopal, Saha, Krishna K., Wang, Suojin

论文摘要

在流行病学队列研究中,相对风险(也称为风险比率)是总结两种治疗或暴露结果的主要关联度量。通常,它测量了由于应用治疗而导致疾病风险的相对变化。当应用于从纵向或聚类研究中收集的相关二进制数据时,估计共同软件包中可用的相对风险的标准方法可能会产生偏见的推断。近年来,已经发布了几种估计相关二进制数据的风险比率的方法,其中一些方法保持了良好的控制覆盖范围概率,但不能保持适当的间隔宽度或间隔位置,以衡量远端和内部非跨越概率之间的平衡,或者反之亦然。本文开发了有效且直接的推理程序,用于根据混合方法估算风险比率的置信区间。通常,混合方法结合了两个单独的置信区间,以形成两个单一风险率,以形成其比率的混合置信区间。此外,我们提出了构建风险比率构建置信区间的程序,该程序通过构建设计效果的概念以及通常在代表性样本调查中使用的有效样本量的概念来直接扩展相关二进制数据的方法。为了研究这些提出的方法的性能,我们进行了广泛的模拟研究。为了证明我们提出的方法的实用性,我们提出了三个实例,将低剂量三环抗抑郁药与安慰剂的副作用与安慰剂进行了比较,治疗组在神经学实验中的疗效以及活性药物在治疗临床试验中固化感染中的效率。

In epidemiological cohort studies, the relative risk (also known as risk ratio) is a major measure of association to summarize the results of two treatments or exposures. Generally, it measures the relative change in disease risk as a result of treatment application. Standard approaches to estimating relative risk available in common software packages may produce biased inference when applied to correlated binary data collected from longitudinal or clustered studies. In recent years, several methods for estimating the risk ratio for correlated binary data have been published, some of which maintain a well-controlled coverage probability but do not maintain an appropriate interval width or the interval location to measure the balance between distal and mesial noncoverage probabilities accurately or, vice versa. This paper develops efficient and straightforward inference procedures for estimating a confidence interval for risk ratio based on a hybrid method. In general, the hybrid method combines two separate confidence intervals for two single risk rates to form a hybrid confidence interval for their ratio. Additionally, we propose the procedures for constructing a confidence interval for risk ratio that directly extends recently recommended methods for correlated binary data by building on the concepts of the design effect and effective sample sizes typically used in representative sample surveys. In order to investigate the performance of these proposed methods, we conduct an extensive simulation study. To demonstrate the utility of our proposed methods, we present three examples from real-life applications, comparing the side effects of low-dose tricyclic antidepressants with a placebo, the efficacy of the treatment group in a teratological experiment, and the efficiency of the active drugs in curing infection for clinical trials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源