论文标题

谐波:学习执行白色框图像和视频协调

Harmonizer: Learning to Perform White-Box Image and Video Harmonization

论文作者

Ke, Zhanghan, Sun, Chunyi, Zhu, Lei, Xu, Ke, Lau, Rynson W. H.

论文摘要

关于图像协调的最新作品将问题作为像素图像翻译任务通过大型自动编码器解决。在处理高分辨率图像时,它们的性能不令人满意和缓慢的推理速度。在这项工作中,我们观察到,调整基本图像过滤器的输入参数,例如亮度和对比度,足以使人类从复合图像中产生逼真的图像。因此,我们将图像协调作为图像级回归问题,以了解人类用于任务的过滤器的参数。我们提出了一个用于图像协调的谐波框架。与基于黑框自动编码器的先前方法不同,Harmonizer包含用于过滤器参数预测的神经网络,以及用于图像协调的几个白色框过滤器(基于预测参数)。我们还引入了级联回归器和一个动态损失策略,以使谐波更加稳定地学习过滤器参数。由于我们的网络仅输出图像级参数和我们使用的过滤器是有效的,因此和谐器比现有方法更轻,更快。全面的实验表明,谐波超过现有方法,特别是在高分辨率输入的情况下。最后,我们将谐调器应用于视频和谐,以1080p分辨率在框架上实现了一致的结果和56 fps。代码和型号可在以下网址提供:https://github.com/zhkkke/harmonizer。

Recent works on image harmonization solve the problem as a pixel-wise image translation task via large autoencoders. They have unsatisfactory performances and slow inference speeds when dealing with high-resolution images. In this work, we observe that adjusting the input arguments of basic image filters, e.g., brightness and contrast, is sufficient for humans to produce realistic images from the composite ones. Hence, we frame image harmonization as an image-level regression problem to learn the arguments of the filters that humans use for the task. We present a Harmonizer framework for image harmonization. Unlike prior methods that are based on black-box autoencoders, Harmonizer contains a neural network for filter argument prediction and several white-box filters (based on the predicted arguments) for image harmonization. We also introduce a cascade regressor and a dynamic loss strategy for Harmonizer to learn filter arguments more stably and precisely. Since our network only outputs image-level arguments and the filters we used are efficient, Harmonizer is much lighter and faster than existing methods. Comprehensive experiments demonstrate that Harmonizer surpasses existing methods notably, especially with high-resolution inputs. Finally, we apply Harmonizer to video harmonization, which achieves consistent results across frames and 56 fps at 1080P resolution. Code and models are available at: https://github.com/ZHKKKe/Harmonizer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源