论文标题
粒子流高斯粒子过滤器
Particle Flow Gaussian Particle Filter
论文作者
论文摘要
非线性模型中的状态估计是通过递归跟踪后验分布来执行的。为此任务提出了大量算法。其中,高斯粒子滤波器使用加权颗粒来构建后部的高斯近似值。在本文中,我们建议使用在高斯边界条件下用于流程方程的可逆粒子流量方法,以生成靠近后部的建议分布。所得的粒子流动颗粒滤波器(PFGPF)算法保留了高斯粒子过滤器的渐近性能,并有可能在高维空间中提高状态估计的性能。我们将PFGPF与粒子流量过滤器和粒子流粒子过滤器中的性能进行了比较。
State estimation in non-linear models is performed by tracking the posterior distribution recursively. A plethora of algorithms have been proposed for this task. Among them, the Gaussian particle filter uses a weighted set of particles to construct a Gaussian approximation to the posterior. In this paper, we propose to use invertible particle flow methods, derived under the Gaussian boundary conditions for a flow equation, to generate a proposal distribution close to the posterior. The resultant particle flow Gaussian particle filter (PFGPF) algorithm retains the asymptotic properties of Gaussian particle filters, with the potential for improved state estimation performance in high dimensional spaces. We compare the performance of PFGPF with the particle flow filters and particle flow particle filters in two challenging numerical simulation examples.