论文标题

通过变异量子算法定价多资产衍生物

Pricing multi-asset derivatives by variational quantum algorithms

论文作者

Kubo, Kenji, Miyamoto, Koichi, Mitarai, Kosuke, Fujii, Keisuke

论文摘要

在理论上和实际上,定价多资产衍生物是金融工程中的重要问题。尽管它适合在数值上求解部分微分方程以计算某些类型的衍生物价格,但随着某些经典方法(例如有限差异方法)的增加,计算复杂性呈指数增长。因此,正在努力通过使用量子计算来降低计算复杂性。但是,当使用幼稚的量子算法求解时,目标导数价格嵌入量子状态的一个基础的幅度中,因此需要指数复杂性才能获得解决方案。为避免瓶颈,先前的研究〜[Miyamoto和Kubo,IEEE关于量子工程的交易,\ textbf {3},1--25(2022)]的事实是,可以通过其未来的时间和折扣点可以通过量子降低量子的折扣价值来获得衍生品的当前价格。在本文中,为了使算法可行,可以在小量子计算机上运行,​​我们使用变分量子模拟来求解黑色 - choles方程并计算从解决方案和概率分布之间的内部产物中的衍生价格。这避免了天真方法的测量瓶颈,即使在嘈杂的量子计算机中也可以提供量子加速。我们还进行数值实验以验证我们的方法。我们的方法将是使用小规模量子计算机在衍生定价方面的重要突破。

Pricing a multi-asset derivative is an important problem in financial engineering, both theoretically and practically. Although it is suitable to numerically solve partial differential equations to calculate the prices of certain types of derivatives, the computational complexity increases exponentially as the number of underlying assets increases in some classical methods, such as the finite difference method. Therefore, there are efforts to reduce the computational complexity by using quantum computation. However, when solving with naive quantum algorithms, the target derivative price is embedded in the amplitude of one basis of the quantum state, and so an exponential complexity is required to obtain the solution. To avoid the bottleneck, the previous study~[Miyamoto and Kubo, IEEE Transactions on Quantum Engineering, \textbf{3}, 1--25 (2022)] utilizes the fact that the present price of a derivative can be obtained by its discounted expected value at any future point in time and shows that the quantum algorithm can reduce the complexity. In this paper, to make the algorithm feasible to run on a small quantum computer, we use variational quantum simulation to solve the Black-Scholes equation and compute the derivative price from the inner product between the solution and a probability distribution. This avoids the measurement bottleneck of the naive approach and would provide quantum speedup even in noisy quantum computers. We also conduct numerical experiments to validate our method. Our method will be an important breakthrough in derivative pricing using small-scale quantum computers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源