论文标题
通过在潜在空间进行计划来解决学习竞赛的自主赛车挑战
Solving Learn-to-Race Autonomous Racing Challenge by Planning in Latent Space
论文作者
论文摘要
在www <dot> aicrowd <dot> com平台上托管的学习竞赛自主赛车虚拟挑战由两个曲目组成:单个和多相机。我们的Uniteam团队是单个相机轨道的最终获胜者之一。该代理必须在最短时间内通过以前未知的F1风格轨道,而越野驾驶量最少。在我们的方法中,我们将U-NET体系结构用于道路细分,各种自动编码器来编码道路二进制面具以及最近的邻居搜索策略,该策略选择给定状态的最佳动作。我们的经纪人在第1阶段(已知赛道)的平均速度为105 km/h,在第2阶段(未知轨道)上达到了73 km/h,而没有任何越野驾驶。在这里,我们提出解决方案和结果。
Learn-to-Race Autonomous Racing Virtual Challenge hosted on www<dot>aicrowd<dot>com platform consisted of two tracks: Single and Multi Camera. Our UniTeam team was among the final winners in the Single Camera track. The agent is required to pass the previously unknown F1-style track in the minimum time with the least amount of off-road driving violations. In our approach, we used the U-Net architecture for road segmentation, variational autocoder for encoding a road binary mask, and a nearest-neighbor search strategy that selects the best action for a given state. Our agent achieved an average speed of 105 km/h on stage 1 (known track) and 73 km/h on stage 2 (unknown track) without any off-road driving violations. Here we present our solution and results.