论文标题

葡萄牙人与卷积神经网络的战后图像分类

Portuguese Man-of-War Image Classification with Convolutional Neural Networks

论文作者

Carneiro, Alessandra, Nascimento, Lorena, Noernberg, Mauricio, Hara, Carmem, Pozo, Aurora

论文摘要

葡萄牙战争人(PMW)是一种凝胶生物体,具有长长的触手,能够造成严重的燃烧,从而导致对人类活动(例如旅游和捕鱼)的负面影响。缺乏有关该物种的时空动力学的信息。因此,使用替代方法收集数据可以有助于其监视。鉴于社交网络的广泛使用和PMW的引人注目的外观,Instagram帖子可能是有希望的监视数据源。遵循此方法的第一个任务是确定指PMW的帖子。本文报告了使用卷积神经网络进行PMW图像分类的,以自动识别Instagram帖子。我们创建了一个合适的数据集,并训练了三个不同的神经网络:VGG-16,RESNET50和InceptionV3,在Imagenet数据集中有没有预先训练的步骤。我们使用准确性,精度,召回和F1得分指标分析了他们的结果。预先训练的RESNET50网络提供了最佳结果,获得了94%的精度和95%的精度,回忆和F1分数。这些结果表明,卷积神经网络对于识别Instagram社交媒体的PMW图像非常有效。

Portuguese man-of-war (PMW) is a gelatinous organism with long tentacles capable of causing severe burns, thus leading to negative impacts on human activities, such as tourism and fishing. There is a lack of information about the spatio-temporal dynamics of this species. Therefore, the use of alternative methods for collecting data can contribute to their monitoring. Given the widespread use of social networks and the eye-catching look of PMW, Instagram posts can be a promising data source for monitoring. The first task to follow this approach is to identify posts that refer to PMW. This paper reports on the use of convolutional neural networks for PMW images classification, in order to automate the recognition of Instagram posts. We created a suitable dataset, and trained three different neural networks: VGG-16, ResNet50, and InceptionV3, with and without a pre-trained step with the ImageNet dataset. We analyzed their results using accuracy, precision, recall, and F1 score metrics. The pre-trained ResNet50 network presented the best results, obtaining 94% of accuracy and 95% of precision, recall, and F1 score. These results show that convolutional neural networks can be very effective for recognizing PMW images from the Instagram social media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源