论文标题
价值的原子建模框架改变记忆单元
An Atomistic Modelling Framework for Valence Change Memory Cells
论文作者
论文摘要
我们提出了一个框架,该框架致力于建模价变更内存(VCM)单元的电阻转换操作。该方法结合了对设备结构的原子描述,一种动力学蒙特卡洛(KMC)模型,用于在外部田间在中央氧化物中创建和扩散氧气空位,以及一种计算电流和电导率的AB-Initio量子传输方法。因此,它重现了现实的随机装置操作及其对所得电导率的影响。我们通过模拟TIN/HFO $ _2 $/TIN VCM电池的切换周期来证明此框架,并在高电阻状态之间看到清晰的电流磁滞,其电导率比为一个数量级。此外,我们观察到电导的变化源于活动电极附近空缺的创建和重组,从而有效地调节电流的隧道间隙。该框架可用于进一步研究原子量表电阻转换背后的机制,并优化VCM材料堆栈和几何形状。
We present a framework dedicated to modelling the resistive switching operation of Valence Change Memory (VCM) cells. The method combines an atomistic description of the device structure, a Kinetic Monte Carlo (KMC) model for the creation and diffusion of oxygen vacancies in the central oxide under an external field, and an ab-initio quantum transport method to calculate electrical current and conductance. As such, it reproduces a realistically stochastic device operation and its impact on the resulting conductance. We demonstrate this framework by simulating a switching cycle for a TiN/HfO$_2$/TiN VCM cell, and see a clear current hysteresis between high/low resistance states, with a conductance ratio of one order of magnitude. Additionally, we observe that the changes in conductance originate from the creation and recombination of vacancies near the active electrode, effectively modulating a tunnelling gap for the current. This framework can be used to further investigate the mechanisms behind resistive switching at an atomistic scale and optimize VCM material stacks and geometries.