论文标题
Discomat:材料科学文章中远距离监督的组合物提取
DiSCoMaT: Distantly Supervised Composition Extraction from Tables in Materials Science Articles
论文作者
论文摘要
KB策划的科学领域(例如材料科学,食品和营养,燃料)的关键组成部分是从域已发表的研究文章中的表中提取信息。为了促进这一方向的研究,我们定义了一项新的NLP任务,即从材料科学论文中的表中提取材料(例如玻璃)的组成(例如眼镜)。该任务涉及解决一致的几个挑战,例如提到构图的表具有很大变化的结构。字幕中的文字和完整纸张需要与表中的数据一起合并;数量,化合物和组成表达式的普通语言必须集成到模型中。我们发布了一个培训数据集,其中包括4,408个远距离监督的表格,以及1,475个手动注释的开发人员和测试表。我们还提出了一个强大的基线盘,该基线将多个图形神经网络与多个特定于任务的正则表达式,功能和约束结合在一起。我们表明,通过大幅度的边缘,盘点优于最新的表处理架构。
A crucial component in the curation of KB for a scientific domain (e.g., materials science, foods & nutrition, fuels) is information extraction from tables in the domain's published research articles. To facilitate research in this direction, we define a novel NLP task of extracting compositions of materials (e.g., glasses) from tables in materials science papers. The task involves solving several challenges in concert, such as tables that mention compositions have highly varying structures; text in captions and full paper needs to be incorporated along with data in tables; and regular languages for numbers, chemical compounds and composition expressions must be integrated into the model. We release a training dataset comprising 4,408 distantly supervised tables, along with 1,475 manually annotated dev and test tables. We also present a strong baseline DISCOMAT, that combines multiple graph neural networks with several task-specific regular expressions, features, and constraints. We show that DISCOMAT outperforms recent table processing architectures by significant margins.