论文标题
压力诱导的抗铁磁四磁性对thmnasn中非磁性偏转四方 - 绝缘子 - 金属跃迁
Pressure induced antiferromagnetic-tetragonal to nonmagnetic-collapse-tetragonal insulator-metal transition in ThMnAsN
论文作者
论文摘要
我们报告了第一原理的数值发现,静液压驱动的四方驱动四方在1111型材料中折叠的四方过渡THMNASN伴随着同时磁结构,绝缘体,与金属过渡,并完全折叠MN矩。我们介绍了随着静水压力的增加,各种结构参数,磁性和电子结构的详细演变。所有结构参数均显示在临界压力p $ _c \ sim $ 9 GPA处的异常;与平面参数相比,C-tattice参数,AS-AS AS-AS AS-AS AS-AS-AS AS-AS AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS-AS参数进行了巨大的修改。由于压力会破坏MN时刻的局部性质,并完全消退,这些修饰在“局部结构相关性”中进行。除了弹性常数外,电子结构还具有较高压力的绝缘器 - 金属和磁结构过渡的指纹,伴随着9 GPA附近的磁矩总崩溃。压力p $ _c $的临界值是四方倒塌四方相变的临界值,相对于现场哈伯德相关性(U)仍然坚固。通过详细计算的声子分散曲线,在较高的压力下肯定了化合物在较高压力下的动力稳定性。磁性自旋结构对电子带结构的影响是通过带展开获得的。 THMNASN在较高压力上的电子结构“有选择地”影响频带,带隙,并且与基于Fe的超导体的电子结构相似,并且轨道选择性Lifshitz Transition的出现。
We report first principles numerical discovery of hydrostatic pressure driven tetragonal to collapsed tetragonal transition in 1111-type material ThMnAsN accompanied by simultaneous magneto-structural, insulator to metal transition together with complete collapse of Mn moment. We present detailed evolution of various structural parameters, magnetism and electronic structures of ThMnAsN with increasing hydrostatic pressure. All the structural parameters show anomalies at a critical pressure P$_c \sim$ 9 GPa; c-lattice parameter, out of plane As-As bond length, anion height (h$_{As}$) undergo drastic modification compared to the in-plane parameters which is manifested in an iso-structural phase transition from tetragonal to a collapsed tetragonal (cT) phase. These modifications in "local structural correlations" due to pressure destroys usually localized nature of Mn moments and gets completely quenched. Apart from that the elastic constant, the electronic structures also bear the finger prints of insulator-metal and magneto-structural transition at higher pressures accompanying a total collapse of magnetic moment at the vicinity of 9 GPa. The critical value of the pressure P$_c$ at which tetragonal to collapse tetragonal phase transition occurs, remains robust with respect to the on-site Hubbard correlation (U). The dynamical stability of the compound at higher pressures are affirmed through detailed computations of phonon dispersion curves endowed with positive phonon frequency through out the Brillouin zone. The effect of magnetic spin structure on the electronic band structures are obtained through band unfolding. The electronic structure of ThMnAsN at higher pressures "orbital selectively" influences bands, band gap and closely resembles with the electronic structure of Fe-based superconductors with the occurrences of orbital selective Lifshitz transition.