论文标题
WafersegClassnet-半导体晶圆缺陷的分类和分割的轻重量网络
WaferSegClassNet -- A Light-weight Network for Classification and Segmentation of Semiconductor Wafer Defects
论文作者
论文摘要
随着半导体晶片的整合密度和设计的复杂性的增加,它们中缺陷的幅度和复杂性也在上升。由于对晶圆缺陷的手动检查是昂贵的,因此高度希望以自动化的人工智能(AI)计算机视觉方法。先前关于缺陷分析的作品具有多个局限性,例如准确性低以及对分类和分割的单独模型的需求。为了分析混合型缺陷,一些以前的作品需要为每种缺陷类型分别训练一个模型,这是不可估计的。在本文中,我们介绍了基于编码器架构的新型网络WafersegClassnet(WSCN)。 WSCN执行单个和混合型晶圆缺陷的同时分类和分割。 WSCN使用“共享编码器”进行分类和细分,该分类允许训练WSCN端到端。我们使用N-PAIR对比度损失首先预处理编码器,然后使用BCE-DICE损失进行分割,并进行分类的分类损失进行分类。使用N-PAIR对比度损失有助于更好地嵌入晶圆图的潜在维度。 WSCN的模型大小仅为0.51MB,仅执行0.2m的拖鞋。因此,它比其他最先进的模型要轻得多。同样,它仅需要150个时期才能收敛,而先前的工作需要4,000个时代。我们在具有38,015张图像的混合WM38数据集上评估了我们的模型。 WSCN的平均分类精度为98.2%,骰子系数为0.9999。我们是第一个在混合WM38数据集中显示分段结果的人。可以从https://github.com/ckmvigil/wafersegclassnet获得源代码。
As the integration density and design intricacy of semiconductor wafers increase, the magnitude and complexity of defects in them are also on the rise. Since the manual inspection of wafer defects is costly, an automated artificial intelligence (AI) based computer-vision approach is highly desired. The previous works on defect analysis have several limitations, such as low accuracy and the need for separate models for classification and segmentation. For analyzing mixed-type defects, some previous works require separately training one model for each defect type, which is non-scalable. In this paper, we present WaferSegClassNet (WSCN), a novel network based on encoder-decoder architecture. WSCN performs simultaneous classification and segmentation of both single and mixed-type wafer defects. WSCN uses a "shared encoder" for classification, and segmentation, which allows training WSCN end-to-end. We use N-pair contrastive loss to first pretrain the encoder and then use BCE-Dice loss for segmentation, and categorical cross-entropy loss for classification. Use of N-pair contrastive loss helps in better embedding representation in the latent dimension of wafer maps. WSCN has a model size of only 0.51MB and performs only 0.2M FLOPS. Thus, it is much lighter than other state-of-the-art models. Also, it requires only 150 epochs for convergence, compared to 4,000 epochs needed by a previous work. We evaluate our model on the MixedWM38 dataset, which has 38,015 images. WSCN achieves an average classification accuracy of 98.2% and a dice coefficient of 0.9999. We are the first to show segmentation results on the MixedWM38 dataset. The source code can be obtained from https://github.com/ckmvigil/WaferSegClassNet.