论文标题

基于连接组的脑疾病分析的可解释的图形神经网络

Interpretable Graph Neural Networks for Connectome-Based Brain Disorder Analysis

论文作者

Cui, Hejie, Dai, Wei, Zhu, Yanqiao, Li, Xiaoxiao, He, Lifang, Yang, Carl

论文摘要

人的大脑位于复杂神经生物学系统的核心,神经元,电路和子系统以神秘的方式相互作用。长期以来,了解大脑的结构和功能机制一直是神经科学研究和临床障碍疗法的引人入胜的追求。将人脑作为网络的连接映射是神经科学中最普遍的范式之一。图神经网络(GNN)最近已成为建模复杂网络数据的潜在方法。另一方面,深层模型的可解释性低,这阻止了其在医疗保健等决策环境中的使用。为了弥合这一差距,我们提出了一个可解释的框架,以分析特定的障碍区域(ROI)和突出的联系。提出的框架由两个模块组成:疾病预测的面向脑网络的主链模型和全球共享的解释发生器,该模型突出了包括疾病特异性的生物标志物,包括显着的ROI和重要连接。我们在三个现实世界中的脑疾病数据集上进行实验。结果证明了我们的框架可以获得出色的性能并确定有意义的生物标志物。这项工作的所有代码均可在https://github.com/hennyjie/ibgnn.git上获得。

Human brains lie at the core of complex neurobiological systems, where the neurons, circuits, and subsystems interact in enigmatic ways. Understanding the structural and functional mechanisms of the brain has long been an intriguing pursuit for neuroscience research and clinical disorder therapy. Mapping the connections of the human brain as a network is one of the most pervasive paradigms in neuroscience. Graph Neural Networks (GNNs) have recently emerged as a potential method for modeling complex network data. Deep models, on the other hand, have low interpretability, which prevents their usage in decision-critical contexts like healthcare. To bridge this gap, we propose an interpretable framework to analyze disorder-specific Regions of Interest (ROIs) and prominent connections. The proposed framework consists of two modules: a brain-network-oriented backbone model for disease prediction and a globally shared explanation generator that highlights disorder-specific biomarkers including salient ROIs and important connections. We conduct experiments on three real-world datasets of brain disorders. The results verify that our framework can obtain outstanding performance and also identify meaningful biomarkers. All code for this work is available at https://github.com/HennyJie/IBGNN.git.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源