论文标题

在现代深度学习方法上降水降低

On the modern deep learning approaches for precipitation downscaling

论文作者

Kumar, Bipin, Atey, Kaustubh, Singh, Bhupendra Bahadur, Chattopadhyay, Rajib, Acharya, Nachiket, Singh, Manmeet, Nanjundiah, Ravi S., Rao, Suryachandra A.

论文摘要

基于深度学习(DL)的降尺度已成为最近地球科学中的流行工具。越来越多的DL方法被采用来降级降水量数据,并在局部(〜几公里甚至更小)的尺度上产生更准确和可靠的估计值。尽管有几项研究采用了降水的动力学或统计缩小降低,但准确性受地面真理的可用性限制。衡量此类方法准确性的一个关键挑战是将缩小的数据与点尺度观测值进行比较,这些观察值通常在如此小的尺度上是无法使用的。在这项工作中,我们进行了基于DL的降水尺度,以估计印度气象部(IMD)的当地降水数据,该数据是通过近似从车站位置到网格点的价值而创建的。为了测试不同DL方法的疗效,我们采用了四种不同的降尺度方法并评估其性能。所考虑的方法是(i)深度统计缩减(DEEPSD),增强卷积长期记忆(ConvlstM),完全卷积网络(U-NET)和超分辨率生成对抗网络(SR-GAN)。 SR-GAN中使用的自定义VGG网络是在这项工作中使用降水数据开发的。结果表明,SR-GAN是降水数据缩减的最佳方法。 IMD站的降水值验证了缩小的数据。这种DL方法为统计缩减提供了有希望的替代方法。

Deep Learning (DL) based downscaling has become a popular tool in earth sciences recently. Increasingly, different DL approaches are being adopted to downscale coarser precipitation data and generate more accurate and reliable estimates at local (~few km or even smaller) scales. Despite several studies adopting dynamical or statistical downscaling of precipitation, the accuracy is limited by the availability of ground truth. A key challenge to gauge the accuracy of such methods is to compare the downscaled data to point-scale observations which are often unavailable at such small scales. In this work, we carry out the DL-based downscaling to estimate the local precipitation data from the India Meteorological Department (IMD), which was created by approximating the value from station location to a grid point. To test the efficacy of different DL approaches, we apply four different methods of downscaling and evaluate their performance. The considered approaches are (i) Deep Statistical Downscaling (DeepSD), augmented Convolutional Long Short Term Memory (ConvLSTM), fully convolutional network (U-NET), and Super-Resolution Generative Adversarial Network (SR-GAN). A custom VGG network, used in the SR-GAN, is developed in this work using precipitation data. The results indicate that SR-GAN is the best method for precipitation data downscaling. The downscaled data is validated with precipitation values at IMD station. This DL method offers a promising alternative to statistical downscaling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源