论文标题

超级灭菌器的放松电动力学

Relaxation electrodynamics of superinsulators

论文作者

Mironov, A., Diamantini, M. C., Trugenberger, C. A., Vinokur, V. M.

论文摘要

超级灭菌器提供了一个独特的实验室,以实现量子材料中强烈的相互作用现象,例如限制和渐近自由。最近的实验证明,超级导体是超导体的镜子双线,具有反向电场效应。库珀对和库珀的孔被电弦局限于中性电尖,而库珀对扮演了夸克的角色。在这里,我们报告了超级薄膜中电亲的非平衡松弛。我们发现,超级仪器中当前段落的时间延迟$ t _ {\ mathrm {sh}} $通过电源法,$ t _ {\ mathrm {sh}}} \ propto(v-v _ {v _ {\ mathrm p} $},是有效的阈值电压。 $μ= 1/2 $和$μ= 3/4 $的两个不同的临界指数分别从电动Meissner状态到混合状态,并分别与电荷损坏的超级控制电阻状态相对应。 $μ= 1/2 $ value为电弦的线性电势限制在电动Meissner状态中相反的电荷的直接实验证据,并有效地排除了疾病诱导的定位,以此作为分离的机制。我们进一步报告记忆效应及其相应的动态临界指数,这些指数在施加电压的突然逆转中产生。我们的观察结果是通过桌面实验探索基本较强互动电荷限制的途径。

Superinsulators offer a unique laboratory realizing strong interaction phenomena like confinement and asymptotic freedom in quantum materials. Recent experiments evidenced that superinsulators are the mirror-twins of superconductors with reversed electric and magnetic field effects. Cooper pairs and Cooper holes in the superinsulator are confined into neutral electric pions by electric strings, with the Cooper pairs playing the role of quarks. Here we report the non-equilibrium relaxation of the electric pions in superinsulating films. We find that the time delay $t_{\mathrm{sh}}$ of the current passage in the superinsulator is related to the applied voltage $V$ via the power law, $t_{\mathrm{sh}}\propto (V-V_{\mathrm p})^{-μ}$, where $V_{\mathrm p}$ is the effective threshold voltage. Two distinct critical exponents, $μ=1/2$ and $μ=3/4$, correspond to jumps from the electric Meissner state to the mixed state and to the superinsulating resistive state with broken charge confinement, respectively. The $μ=1/2$ value establishes a direct experimental evidence for the electric strings' linear potential confining the charges of opposite signs in the electric Meissner state and effectively rules out disorder-induced localization as a mechanism for superinsulation. We further report the memory effects and their corresponding dynamic critical exponents arising upon the sudden reversal of the applied voltage. Our observations open routes for exploring fundamental strong interaction charge confinement via desktop experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源