论文标题

无监督的复发性联合学习,用于保护隐私的移动边缘计算网络中的边缘流行度预测

Unsupervised Recurrent Federated Learning for Edge Popularity Prediction in Privacy-Preserving Mobile Edge Computing Networks

论文作者

Zheng, Chong, Liu, Shengheng, Huang, Yongming, Zhang, Wei, Yang, Luxi

论文摘要

如今,无线通信正在迅速重塑整个行业。特别是,移动边缘计算(MEC)是一种用于工业互联网(IIOT)的促成技术(IIOT),使强大的计算/存储基础架构更靠近移动终端,从而大大降低了响应延迟。为了在网络边缘获得积极的缓存的好处,对最终设备之间的受欢迎程度的精确知识至关重要。但是,在许多IIOT场景中,内容流行的内容流行以及数据私人关系的复杂性质对其获取构成了艰巨的挑战。在本文中,我们建议针对MEC启用的IIOT提供无监督和保护隐私的受欢迎程度预测框架。引入了本地和全球流行的概念,并将每个用户的随时间变化的流行度建模为无模型的马尔可夫链。在此基础上,提出了一种新颖的无监督复发性联合学习(URFL)算法,以预测分布式的普及,同时实现隐私保护和无监督的培训。仿真表明,提出的框架可以根据降低的根平方误差提高预测准确性,高达$ 60.5 \%-68.7 \%$。此外,避免了手动标记和违反用户数据隐私的行为。

Nowadays wireless communication is rapidly reshaping entire industry sectors. In particular, mobile edge computing (MEC) as an enabling technology for industrial Internet of things (IIoT) brings powerful computing/storage infrastructure closer to the mobile terminals and, thereby, significant lowers the response latency. To reap the benefit of proactive caching at the network edge, precise knowledge on the popularity pattern among the end devices is essential. However, the complex and dynamic nature of the content popularity over space and time as well as the data-privacy requirements in many IIoT scenarios pose tough challenges to its acquisition. In this article, we propose an unsupervised and privacy-preserving popularity prediction framework for MEC-enabled IIoT. The concepts of local and global popularities are introduced and the time-varying popularity of each user is modelled as a model-free Markov chain. On this basis, a novel unsupervised recurrent federated learning (URFL) algorithm is proposed to predict the distributed popularity while achieve privacy preservation and unsupervised training. Simulations indicate that the proposed framework can enhance the prediction accuracy in terms of a reduced root-mean-squared error by up to $60.5\%-68.7\%$. Additionally, manual labeling and violation of users' data privacy are both avoided.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源