论文标题
考虑决策依赖性意外事件的分配具有强大的弹性增强策略
A Distributionally Robust Resilience Enhancement Strategy for Distribution Networks Considering Decision-Dependent Contingencies
论文作者
论文摘要
在对分配网络进行弹性增强时,存在两个障碍,可以可靠地模拟不确定的意外情况:1)由于各种线路硬化决策而导致决策的不确定性(DDU),而2)由于极端天气事件(EWES)(EWES)中的停战有限,因此分配歧义。为了应对这两个挑战,本文根据决策依赖的歧义集(SWDD-ASS),在该方案中,在EWE诱导的突发事件中固有的DDU和分布歧义是针对每个可能的母系场景同时捕获的。然后,制定了两阶段的三重级决策依赖性分布在鲁棒的弹性增强(DD-DRRE)模型,其输出包括最佳的线硬化,分布式生成(DG)分配(DG)分配以及主动网络重新配置策略,在SWDD-Ass中最差的分布中。随后,DD-DRRE模型等效地重铸了混合构成线性编程(MILP)的主问题和多个方案的子问题,从而有助于采用定制的列和构件生成(C&CG)算法。最后,案例研究表明,与其流行的随机和健壮的对应物相比,我们的模型的样本外部表现有了显着改善。此外,定量估计了合并歧义性和分配信息的潜在价值,为具有不同预算和风险规定水平的计划者提供了有用的参考。
When performing the resilience enhancement for distribution networks, there are two obstacles to reliably model the uncertain contingencies: 1) decision-dependent uncertainty (DDU) due to various line hardening decisions, and 2) distributional ambiguity due to limited outage information during extreme weather events (EWEs). To address these two challenges, this paper develops scenario-wise decision-dependent ambiguity sets (SWDD-ASs), where the DDU and distributional ambiguity inherent in EWE-induced contingencies are simultaneously captured for each possible EWE scenario. Then, a two-stage trilevel decision-dependent distributionally robust resilient enhancement (DD-DRRE) model is formulated, whose outputs include the optimal line hardening, distributed generation (DG) allocation, and proactive network reconfiguration strategy under the worst-case distributions in SWDD-ASs. Subsequently, the DD-DRRE model is equivalently recast to a mixed-integer linear programming (MILP)-based master problem and multiple scenario-wise subproblems, facilitating the adoption of a customized column-and-constraint generation (C&CG) algorithm. Finally, case studies demonstrate a remarkable improvement in the out-of-sample performance of our model, compared to its prevailing stochastic and robust counterparts. Moreover, the potential values of incorporating the ambiguity and distributional information are quantitatively estimated, providing a useful reference for planners with different budgets and risk-aversion levels.