论文标题

全身风险措施的深度学习

Deep Learning for Systemic Risk Measures

论文作者

Feng, Yichen, Min, Ming, Fouque, Jean-Pierre

论文摘要

本文的目的是通过应用深度学习方法作为计算最佳资本分配策略的工具来研究系统性风险措施的新方法学框架。在这个新框架下,系统性风险措施可以解释为在汇总个人风险之前将资本分配给单个机构来确保汇总系统的最小现金。除了在非常有限的情况下,此问题没有明确的解决方案。深度学习越来越多地在财务模型和风险管理中引起人们的关注,我们建议我们基于深度学习的算法解决风险措施的原始问题和双重问题,从而学习公平的风险分配。特别是,我们解决双重问题的方法涉及受众所周知的生成对抗网络(GAN)方法的启发,以及对radon-Nikodym衍生产品的新设计的直接估计。我们通过对该主题进行大量数值研究结束了论文,并提供了与系统性风险措施相关的风险分配的解释。在指数偏好的特殊情况下,与最佳显式溶液作为基准相比,数值实验表现出了拟议算法的出色性能。

The aim of this paper is to study a new methodological framework for systemic risk measures by applying deep learning method as a tool to compute the optimal strategy of capital allocations. Under this new framework, systemic risk measures can be interpreted as the minimal amount of cash that secures the aggregated system by allocating capital to the single institutions before aggregating the individual risks. This problem has no explicit solution except in very limited situations. Deep learning is increasingly receiving attention in financial modelings and risk management and we propose our deep learning based algorithms to solve both the primal and dual problems of the risk measures, and thus to learn the fair risk allocations. In particular, our method for the dual problem involves the training philosophy inspired by the well-known Generative Adversarial Networks (GAN) approach and a newly designed direct estimation of Radon-Nikodym derivative. We close the paper with substantial numerical studies of the subject and provide interpretations of the risk allocations associated to the systemic risk measures. In the particular case of exponential preferences, numerical experiments demonstrate excellent performance of the proposed algorithm, when compared with the optimal explicit solution as a benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源