论文标题

语言模型可以玩得开心吗?中国可笑的串扰的案例研究

Can Language Models Make Fun? A Case Study in Chinese Comical Crosstalk

论文作者

Wang, Benyou, Wu, Xiangbo, Liu, Xiaokang, Li, Jianquan, Tiwari, Prayag, Xie, Qianqian

论文摘要

语言是人类交流的主要工具,其中幽默是最有吸引力的部分之一。使用计算机的人类产生自然语言,又称自然语言生成(NLG),已广泛用于对话系统,聊天机器人,机器翻译以及计算机AID创建的创建,例如Idea Generations,脚本写作。但是,自然语言的幽默方面相对不足,尤其是在预训练的语言模型时代。在这项工作中,我们旨在初步测试NLG是否可以像人类一样产生幽默。我们构建了一个新的数据集,该数据集由众多数字化的中国可笑的串扰脚本(称为c $^3 $简称),该脚本适用于1800年代以来称为“ Xiangsheng”的流行中国表演艺术。 (为了方便非中心扬声器,我们在本文中称为“ Xiangsheng”的“串扰”。)我们基准了各种一代方法,包括训练seq2seq,微调的中间尺度PLMS和大型PLMS(带有和无需调用)。此外,我们还进行了人类评估,表明1)大规模预处理在很大程度上提高了串扰的产生质量; 2)即使是最好的PLM产生的脚本远非我们的期望,只有65%的人类创建的串扰质量。我们得出结论,使用大型PLM可以在很大程度上改善幽默的产生,但仍处于起步阶段。 \ url {https://github.com/anonno2/crosstalk-generation}公开获得数据和基准代码。

Language is the principal tool for human communication, in which humor is one of the most attractive parts. Producing natural language like humans using computers, a.k.a, Natural Language Generation (NLG), has been widely used for dialogue systems, chatbots, machine translation, as well as computer-aid creation e.g., idea generations, scriptwriting. However, the humor aspect of natural language is relatively under-investigated, especially in the age of pre-trained language models. In this work, we aim to preliminarily test whether NLG can generate humor as humans do. We build a new dataset consisting of numerous digitized Chinese Comical Crosstalk scripts (called C$^3$ in short), which is for a popular Chinese performing art called `Xiangsheng' since 1800s. (For convenience for non-Chinese speakers, we called `crosstalk' for `Xiangsheng' in this paper.) We benchmark various generation approaches including training-from-scratch Seq2seq, fine-tuned middle-scale PLMs, and large-scale PLMs (with and without fine-tuning). Moreover, we also conduct a human assessment, showing that 1) large-scale pretraining largely improves crosstalk generation quality; and 2) even the scripts generated from the best PLM is far from what we expect, with only 65% quality of human-created crosstalk. We conclude, humor generation could be largely improved using large-scaled PLMs, but it is still in its infancy. The data and benchmarking code is publicly available in \url{https://github.com/anonNo2/crosstalk-generation}.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源