论文标题
反应跳跃过程的同步和随机吸引子
Synchronization and random attractors for reaction jump processes
论文作者
论文摘要
这项工作探讨了通过化学反应网络给出的连续时间马尔可夫跳跃过程引起的共同噪声引起的类似同步现象。相应的随机动力系统以两步过程为单位,首先是嵌入式离散时间马尔可夫链的状态,然后针对增强的马尔可夫链,包括随机跳跃时间。我们发现了一个时班时的同步,从某种意义上说,在一定的等待时间之后,一个轨迹完全通过一定的时间延迟复制了另一个轨迹。这种同步行为是否发生取决于初始状态的组合。我们通过分析嵌入式马尔可夫链的相应两点运动并确定相关的随机吸引子的结构,证明了针对特殊设置出生死亡过程的部分时间迁移同步。在这种情况下,我们还为离散的离散空间随机动力学系统提供了有关随机吸引子的存在和形式的一般结果。
This work explores a synchronization-like phenomenon induced by common noise for continuous-time Markov jump processes given by chemical reaction networks. A corresponding random dynamical system is formulated in a two-step procedure, at first for the states of the embedded discrete-time Markov chain and then for the augmented Markov chain including also random jump times. We uncover a time-shifted synchronization in the sense that -- after some initial waiting time -- one trajectory exactly replicates another one with a certain time delay. Whether or not such a synchronization behaviour occurs depends on the combination of the initial states. We prove this partial time-shifted synchronization for the special setting of a birth-death process by analyzing the corresponding two-point motion of the embedded Markov chain and determine the structure of the associated random attractor. In this context, we also provide general results on existence and form of random attractors for discrete-time, discrete-space random dynamical systems.